
FGBS Spring 2023 - March 7, 2023 - Dresden, Germany

Flexible and Concise Spectre
Mitigations for BPF

Luis Gerhorst, Henriette Hofmeier, Timo Hönig

1

Motivation: High-Performance IO

• Problem: User-/kernel switching
overhead too high for packet
processing, NVME disks, tracing, …

• Approaches: System-call batching
(e.g. io_uring, aio), kernel-bypass
(e.g. DPDK), software-based
isolation (BPF)

2

• Un-/privileged users load bytecode into the kernel

• Verified for type-/memory-safety and a bounded execution time

• JIT-compiled and invoked in kernel mode

• BPF program can call kernel helpers (≈ system calls)

• Problem: Expressiveness and performance are limited by mitigations against
speculative side-channel attacks

3

Speculative Side-Channel Attacks

• „Hardware bugs“ not considered: Meltdown, load-value
injection

• Software-based mitigation: Bounds-check bypass,
speculative-store bypass, speculative type-confusion

• Non cache-based side-channels

• Secrets are encoded into side-channels on speculative
paths

4

• Memory-safety: Only access borrowed/owned
memory

• Type-safety: Only perform operations valid for
the type (pointer/scalar/…)

• Pointers are secrets: Unprivileged programs can
not cast pointers to scalars or encode them into
side-channel

5

BPF Verifier

BPF Spectre Mitigations
• Speculative Store-Bypass (v4) →

Fences

• Speculative Bounds-Check
Bypass (v1) → Reject / Masking

• Speculative Type Confusion (v1)
→ Reject

• Evaluation: Collected over 350
programs from 4 projects and
analyzed the number of fences and
rejections

6

7

8

9

BPF Spectre Mitigations Limitations

• Unprivileged: Hardcoded policy (no speculative breakout with speculative
constant-time for pointers) → Limited expressiveness and performance

• Privileged: Only some mitigations active → Easily introduce vulnerabilities

• Privileged and unprivileged: Secrets unknown to compiler completely
unprotected

• Approaches: Refine kernel implementation or create an extensible architecture

10

Approach: Refine Kernel Mitigations

• Replace „no speculative breakout“ with „relative constant-time“ policy

• Improves expressiveness

• Makes the verifier more complex (currently already 13k SLoC)

11

Approach: Extensible Mitigations

• Introduce BPF instructions to prevent/restrict speculation

• Exposes speculation in Userspace ABI

• Privileged userspace services: Apply concise mitigations to unprivileged programs

• Compilers and programmers: Precisely control mitigations for privileged programs

12

Summary

• BPF is the only production-ready system for software-fault isolation that fully
mitigates Spectre

• Speculative bounds-check bypass and type-confusion mitigations limit
expressiveness while speculative store-bypass limits performance

• We will attempt to refine the current mitigation-approach, and create an
architecture that allows for flexible and concise user-defined mitigations

13

Appendix

14

 Speculation Policies

• Leakage model: Which instructions (e.g. load) leak which information (e.g. data
address)?

• Attacker model: None, only remote, local unprivileged users

• Leakage + attacker model → speculation policy: No speculation, no speculative
breakout, speculative constant-time, relative constant-time, …, no Spectre, arbitrary
speculation

Security depends on system context and hardware

15

Limited Performance
Difference measureable, real-world programs WIP

16

Limited Expressiveness
Even for small example programs: Many can not be mitigated

17

18

19

