Middleware – Cloud Computing

Einführung

Wintersemester 2025/26

Tobias Distler, Christian Berger

Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl Informatik 4 (Systemsoftware)

Überblick

Einführung

Überblick

Herausforderungen

Cloud Computing

Merkmale

- Auslagerung von Diensten, Berechnungen und/oder Daten
- Verfügbarkeit scheinbar unbegrenzter Ressourcen
- Einfacher universeller Zugriff
- Schnelle dynamische Skalierbarkeit

Grundlagen

- Hochskalierbare verteilte Infrastrukturen auf Provider-Seite
- Leistungsfähige Netzwerkanbindung auf Client-Seite

Literatur

Mache Creeger
Cloud Computing: An Overview
Queue – Distributed Computing, 7(5), 2009.

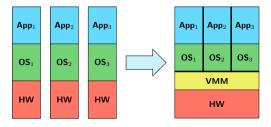
Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz et al. A View of Cloud Computing Communications of the ACM, 53(4):50–58, 2010.

Skalierbarkeit

- Häufiges Problem: Auslastungsabhängige Bereitstellung von Ressourcen für Dienste
 - Lastentwicklung eventuell unbekannt
 - Ungünstiges Verhältnis zwischen Spitzen- und Durchschnittslast
 - Starke Lastschwankungen über den Tag bzw. das Jahr hinweg
- Mögliche Konsequenzen ungenauer Bedarfsvorhersagen
 - Bereitstellung von zu wenigen Ressourcen (Underprovisioning)
 - Bereitstellung von zu vielen Ressourcen (Overprovisioning)
- Potentielle Vorteile durch Verlagerung von Diensten in die Cloud
 - Verfügbarkeit zusätzlicher Ressourcen im Sekunden- bzw. Minutenbereich
 - Dynamische Skalierbarkeit in beide Richtungen
 - Abrechnungsmodell: Pay-as-you-go
 - Kosten orientieren sich am tatsächlichen Ressourcenverbrauch
 - Feingranulare Abrechnung [Beispiele: Virtuelle Maschine: pro Stunde, Netzwerk: pro Megabyte]
 - Achtung: Dienste in der Cloud zu betreiben ist nicht automatisch günstiger!

Verfügbarkeit

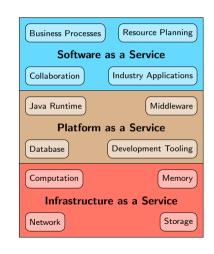
- Wartung und Reparatur von Systemkomponenten
 - Aufgabe des Cloud-Anbieters
 - Einschränkung von Verfügbarkeitsgarantien für Cloud-Dienste
 - Nutzer hat keinen Einfluss auf Zeitpunkt und Dauer der Maßnahmen
- Technische Infrastruktur in Cloud-Datenzentren
 - Zusammenschluss einer großen Anzahl verhältnismäßig kleiner Server
 - Günstige Einkaufspreise aufgrund großer Stückzahlen
 - Konsequenzen
 - Ausfälle einzelner Komponenten werden zum Regelfall
 - Kompatibilitätsprobleme aufgrund heterogener Hardware
 - Realistisches Fehlerszenario: Ausfall kompletter Datenzentren
- Maßnahmen zur Tolerierung von Fehlern
 - Verteilung eines Diensts auf verschiedene Datenzentren
 - Replikation von Daten über mehrere Standorte


Basistechnologien

Web-Services

- Sprachunabhängige Basis für entfernte Kommunikation
- Bereitstellung von Diensten in der Cloud
- Schnittstelle zur Cloud-Konfigurierung

Virtualisierung


- Paralleler Betrieb mehrerer virtueller Maschinen auf einem Rechner
- Höhere Auslastung einzelner Rechner [2-3% (ohne Virt.) → bis zu 80% (mit Virt.) [Creeger]]
- Kostenersparnis durch geringeren Platzbedarf

Everything as a Service

Kategorien

- Software as a Service (SaaS)
 - Bereitstellung vom Endnutzer verwendeter Dienste
 - Beispiel: Google Docs
- Platform as a Service (PaaS)
 - Bereitstellung von Middleware zur Implementierung komplexer Dienste
 - Beispiel: Google AppEngine
- Infrastructure as a Service (IaaS)
 - Bereitstellung von Rechen- und Speicherinfrastruktur
 - Beispiel: Amazon EC2
- In der Praxis
 - Oftmals als Schichten aufeinander aufbauend
 - Grenzen zwischen Kategorien fließend

Einsatzszenarien

■ Öffentliche Cloud (Public Cloud)

- Unternehmen (z. B. Amazon, Microsoft) stellen ihre Infrastruktur zur Verfügung
- Cloud-Nutzer müssen selbst vergleichsweise wenige Ressourcen vorhalten

Private Cloud

- Nutzung der bereits im eigenen Unternehmen vorhandenen Infrastruktur
- Einsatz von Virtualisierung zur flexiblen Verwaltung von Ressourcen

Hybride Cloud

- Kombination aus privater und öffentlicher Cloud
- Mögliche Aufteilung
 - Kritische Daten verbleiben im privaten Teil der Cloud
 - Öffentliche Cloud vor allem zur Deckung von Bedarfsspitzen

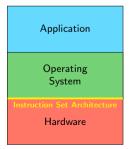
■ Multi Clouds / Cloud-of-Clouds

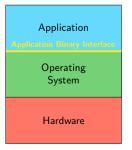
- Parallele Nutzung verschiedener öffentlicher Clouds
- Absicherung gegen den Ausfall eines Cloud-Anbieters

Limitierungen und offene Fragen

- "Vendor Lock-In"-Problem: Starke Abhängigkeit von einem Cloud-Anbieter
 - Erschwerter Anbieterwechsel
 - Gründe: fehlende Standards, aufwendiger Datentransfer
- Technische Limitierungen
 - Ineffizienter Transfer großer Datenmengen in die bzw. aus der Cloud [Amazon bietet daher z. B. an, Daten per Festplatte zu transferieren: https://aws.amazon.com/de/snowball/]
 - Optimale Isolation von virtuellen Maschinen ist nicht immer möglich
 - Sicherheitsprobleme (z. B. Schwachstellen in der Virtualisierungssoftware)
 - Problem der Performance Isolation: Instabile bzw. unvorhersehbare Performanz bestimmter Operationen (z. B. Festplattenzugriffe)
- Weiterführende Aspekte
 - Vertraulichkeit von Daten
 - Rechtliche Fragen (Beispiele)
 - Dürfen medizinische Daten in einer öffentlichen Cloud verarbeitet werden?
 - Werden gesetzliche Bestimmungen zum Speicherort von Daten eingehalten?

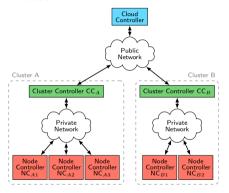
Überblick


Einführung


Überblick

Herausforderungen

Wie lässt sich Virtualisierung praktikabel realisieren?


- Anforderungen an ein virtualisiertes System
 - Äquivalenz
 - Ressourcenkontrolle
 - Effizienz
- Virtualisierungsebenen
 - Systemvirtualisierung: Virtualisierung der Instruction Set Architecture
 - Prozessvirtualisierung: Virtualisierung des Application Binary Interface

Wie wird die eigene Infrastruktur für andere nutzbar?

Aufbau einer Infrastruktur-Cloud

Aufgabenbereiche

- Verwaltung von physischen Maschinen
- Verwaltung und Platzierung von virtuellen Maschinen
- Anbindung an Datenspeicher

Wie lassen sich große Datenmengen verwalten?

Ansatz

- Speziell auf die jeweiligen Anforderungen zugeschnittene Systeme
- Enge Verzahnung mit der Anwendung

■ Beispiel: Google File System

- Anforderungen
 - Sehr große Dateien
 - Hauptsächlich sequentielle Schreibzugriffe, kaum Modifikationen
- Kein Dateisystem im klassischen Sinne
- Optimierte Auslastung der Netzwerkverbindungen

Beispiel: Amazon Dynamo

- Anforderungen
 - Große Anzahl an vergleichsweise kleinen Datensätzen
 - Hohe Verfügbarkeit
- Replizierter Datenspeicher für Schlüssel-Wert-Paare
- Abgeschwächte Konsistenzgarantien

Wie lassen sich große Datenmengen verarbeiten?

- Beispiel: Google (und viele andere)
 - Anforderungen
 - Parallele Nutzung einer großen Anzahl von Rechnern
 - Einfache Realisierung von Anwendungen
 - MapReduce
 - Framework übernimmt Verteilung der Anwendung
 - Programmierer implementiert zwei Methoden
 - * Map: Abbildung der Eingabedaten auf Schlüssel-Wert-Paare
 - * Reduce: Zusammenführung der von Map erzeugten Schlüssel-Wert-Paare
- Koordinierung und Konfigurierung verteilter Anwendungen
 - Anforderungen
 - Abstimmung zwischen einer großen Anzahl von Prozessen
 - Ausfallsichere Verwaltung von Konfigurationsinformationen
 - Beispiel: Chubby (Google)
 - Bereitstellung als externer Koordinierungsdienst
 - Generische Schnittstelle zur Implementierung komplexer Abstraktionen