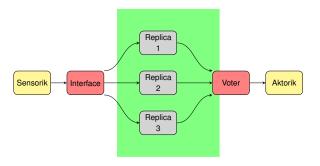
Verlässliche Echtzeitsysteme

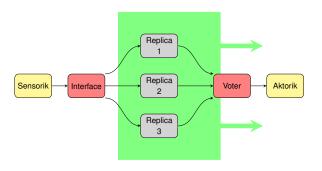
Übungen zur Vorlesung

Codierung


Phillip Raffeck, Tim Rheinfels, Simon Schuster, Peter Wägemann

Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl Informatik 4 (Verteilte Systeme und Betriebssysteme) https://sys.cs.fau.de

Wintersemester 2022


Klassische "Triple Modular Redundancy" (TMR)

- Schnittstelle sammelt Eingangsdaten (Replikdeterminismus)
- Verteilt Daten und aktiviert Replikate
- Mehrheitsentscheider (Voter) wählt Ergebnis
- Ergebnis wird an Aktuator versendet

Klassische "Triple Modular Redundancy" (TMR)

Redundanzbereich

Ausschließlich Replikatausführung

Erweiterung der Ausgangsseite mit Informationsredundanz

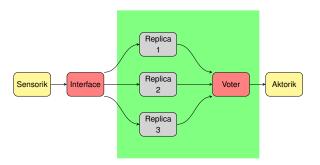
Mehrheitsentscheid über codierte Prüfsumme

Erweiterte arithmetische Codierung

nach Forin 1989: "Vital coded microprocessor principles and application for various transit systems" [1]

- Arithmetisch codierter Wert V_C
- Ausgangswert –

$$V_C = V * A + B_V + D$$


- Schlüssel
- Variablenspezifische Signatur
- Zeitstempel

Wertebereichseinschränkungen

- Schlüssel A sollte so groß wie möglich sein:
 - \rightarrow Möglichst geringe Restfehlerwahrscheinlichkeit (P = 1/A)
- Wertebereich des dynamischen Zeitstempels
 - $D = \{x | x \in \mathbb{N}_0 \land x \le D_{max}\}$
 - Zeitstempel darf überlaufen: $D_{max} + 1 = 0$
- Für jede Signatur $B_* \in \mathbb{N}$ muss dann gelten
 - $\blacksquare B_* + D_{max} < A$
 - Die minimale Distanz zwischen jeweils zwei Signaturen im System muss größer D_{max} sein: $\forall i,j: |B_i B_j| > D_{max}$
 - Sämtliche Distanzen zwischen jeweils zwei Signaturen müssen unterschiedlich sein: $\forall i : \forall j, k : |B_i B_j| = |B_k B_j| \Rightarrow i = k$

Erweiterung I – codierte Ausgangswerte

- Replikate liefern arithmetisch codierte Ergebnisse
- Mehrheitsentscheid auf codierten Prüfsummen
- Übertragung codierter Ergebnisse

EAN Vergleichsoperator

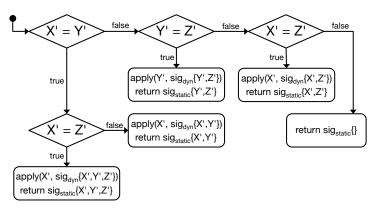
Vereinfachung für diese Übungsaufgabe

- Kein Zeitstempel
- Voting basiert auf codierter Vergleichsoperation:

$$X_C = Y_C \Rightarrow X * A + B_X = Y * A + B_Y$$

Im fehlerfreien Fall gilt:

$$X = Y$$
, $A = A$ aber $B_X \neq B_Y$!


- Rohwerte sind identisch
- Schlüssel ist per Definition identisch
- Signaturen sind unterschiedlich (aber konstant!)

Bestimmung der Gleichheit durch Differenzbildung:

$$\sim X_C - Y_C = B_X - B_Y = const.$$

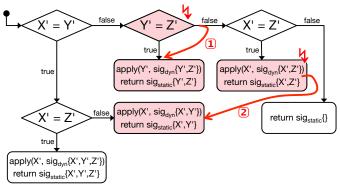
Codierter Mehrheitsentscheid

Bestimmung von dynamischer und statischer Signatur:

$$\rightarrow sig_{dyn}(X', Y') : X' = Y' \Rightarrow X' - Y'$$

 $\rightarrow sig_{static}(X', Y') : X' = Y' \Rightarrow B_X - B_Y$

Für die Signaturen muss gelten: $B_X > B_Y > B_Z$


Codierter Mehrheitsentscheid (Forts.)

- I. Vergleichsoperation wird durchgeführt (z. B. $X' = Y' \wedge X' = Z'$)
 - Berechnung von sig_{dyn}
 - Vergleich mit sig_{static}
- Verzweigungsentscheidung wird nachberechnet:
 - Wiederholte (redundante) Berechnung von sig_{dvn}
 - Erneuter Vergleich: sig_{dyn} = sig_{static}
 - Addiere sig_{dvn} (apply) zum gewählten Ergebnis
- Konstante Signatur des durchlaufenen Zweiges identifiziert Gewinner (Rückgabewert: sig_{static})
 - Aktor wählt entsprechendes Replikatergebnis
 - Führt inverse Operation zu apply durch

Im Voter wurde die *dynamisch berechnete Signatur der Verzweigungsentscheidung* hinzu addiert. Im Aktor wird mit der entsprechenden *konstanten Signatur zurückgerechnet*.

Codierter Mehrheitsentscheid - Fehlerfall

- 1. Falsche Verzweigungsentscheidung: $(Y' \neq Z')$
- Y' wird als korrekt angenommen, sig_{dvn} wird berechnet
- ullet allerdings ist sig_{dyn} tatsächlich $eq sig_{static}$
- Fehler wird vor dem apply erkannt
- 2. Falscher (plötzlicher) Sprung

Ausgangslage

- Wähle A = 601
- Initiale Ergebniskodierung in den Replikaten:

	X	Υ	Z
Wert	7	5	7
В	37	23	5
Kodiert	X' = A * 7 + 37	Y'=A*5+23	Z' = A*7+5
	= 4244	= 3028	= 4212

Berechnung der statischen Signaturen vorab, statisch:

$$sig_{static} \{ X', Y', Z' \} = (B_X - B_Y) + (B_X - B_Z) = 46$$
 $sig_{static} \{ X', Y' \} = (B_X - B_Y) = 14$
 $sig_{static} \{ Y', Z' \} = (B_Y - B_Z) = 18$
 $sig_{static} \{ X', Z' \} = (B_X - B_Z) = 32$

Regulärer Durchlauf

Das eigentliche Voting geschieht dann zur Laufzeit:

1.
$$X' = Y'$$
?

$$X' - Y' \stackrel{?}{=} sig_{static} \{X', Y'\} \Leftrightarrow 4244 - 3028 = 1216 \stackrel{?}{=} 14 \Leftrightarrow \textit{false}$$

2.
$$Y' = Z'$$
?

$$Y' - Z' \stackrel{?}{=} sig_{static} \left\{ Y', Z' \right\} \Leftrightarrow 3028 - 4212 = -1184 \stackrel{?}{=} 18 \Leftrightarrow false$$

3.
$$X' = Z'$$
?

$$X' - Z' \stackrel{?}{=} sig_{static} \{X', Z'\} \Leftrightarrow 4244 - 4212 = 32 \stackrel{?}{=} 32 \Leftrightarrow true$$

4. Berechnung der dynamischen Signaturen zur Laufzeit:

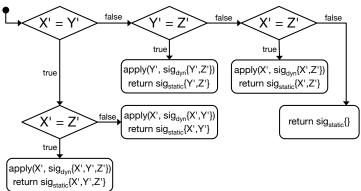
$$sig_{dvn}\{X',Z'\}=(X'-Z')=(4244-4212)=32$$

Regulärer Durchlauf (II)

- 5. $sig_{dyn}\{X', Z'\} \stackrel{?}{=} sig_{static}\{X, Z\} \Leftrightarrow 32 \stackrel{?}{=} 32 \Leftrightarrow true$
- 6. $X' = apply(X', sig_{dyn}\{X', Z'\}) = 4276$
- 7. $B_E \leftarrow sig_{static} \{X', Z'\} = 32$
- 8. return (32)
- 9. Nachschlagen der zugrundeliegenden Variable mittels $B_{dyn}=32$ (erste Variable der Konsensmenge), basierend auf den vorberechneten statischen Werten:

$$(result_{variable}, result_{extrasignature}) \leftarrow (X', B_X)$$

10. $inv_apply(result_{variable}, B_{dyn}) = inv_apply(4276, 32) = 4276 - 32 = 4244$



Regulärer Durchlauf (III)

11. Signaturverifikation:

check(4244, A,
$$B_X$$
): $\frac{4244-B_X}{A} = 7$ Rest: 0

12. Ergebnis erfolgreich dekodiert: 7

Es hat somit eine erfolgreiche Einigung auf die Konsensmenge $\{X',Z'\}$ stattgefunden.

Ausgangslage (unverändert)

- Wähle A = 601
- Initiale Ergebniskodierung in den Replikaten:

	X	Υ	Z
Wert	7	5	7
В	37	23	5
Kodiert	X' = A * 7 + 37	Y'=A*5+23	Z' = A*7+5
	= 4244	= 3028	= 4212

Berechnung der statischen Signaturen vorab, statisch:

$$sig_{static} \{ X', Y', Z' \} = (B_X - B_Y) + (B_X - B_Z) = 46$$
 $sig_{static} \{ X', Y' \} = (B_X - B_Y) = 14$
 $sig_{static} \{ Y', Z' \} = (B_Y - B_Z) = 18$
 $sig_{static} \{ X', Z' \} = (B_X - B_Z) = 32$

Fehlerszenario ①

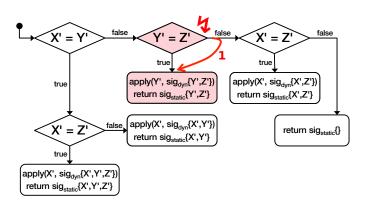
1. X' = Y'?

$$X' - Y' \stackrel{?}{=} sig_{static} \{X', Y'\} \Leftrightarrow 4244 - 3028 = 1216 \stackrel{?}{=} 14 \Leftrightarrow false$$

2. Y' = Z'?

$$Y' - Z' \stackrel{?}{=} sig_{static} \left\{ Y', Z' \right\} \Leftrightarrow 3028 - 4212 = -1184 \stackrel{?}{=} 18 \Leftrightarrow false$$

- 3. Hier tritt nun der Operatorfehler ein, die falsche Verzweigung ① wird aus gewählt
- 4. Berechnung der dynamischen Signaturen zur Laufzeit:


$$sig_{dyn}\{Y', Z'\} = (Y' - Z') = (3028 - 4212) = -1184$$

5. $sig_{dyn}\{Y',Z'\}\stackrel{?}{=}sig_{static}\{Y,Z\} \Leftrightarrow -1184\stackrel{?}{=}18 \Leftrightarrow false$

Fehlerszenario (II)

6. Fehler erfolgreich detektiert: Vergleich zwischen sig_{dyn} und sig_{static} für Konsensmenge $\{Y', Z'\}$ fehlgeschlagen

Ausgangslage (unverändert)

- Wähle A = 601
- Initiale Ergebniskodierung in den Replikaten:

	X	Υ	Z
Wert	7	5	7
В	37	23	5
Kodiert	X' = A * 7 + 37	Y'=A*5+23	Z'=A*7+5
	= 4244	= 3028	= 4212

Berechnung der statischen Signaturen vorab, statisch:

$$sig_{static} \{ X', Y', Z' \} = (B_X - B_Y) + (B_X - B_Z) = 46$$
 $sig_{static} \{ X', Y' \} = (B_X - B_Y) = 14$
 $sig_{static} \{ Y', Z' \} = (B_Y - B_Z) = 18$
 $sig_{static} \{ X', Z' \} = (B_X - B_Z) = 32$

Fehlerszenario 2

1. X' = Y'?

$$X' - Y' \stackrel{?}{=} sig_{static} \{X', Y'\} \Leftrightarrow 4244 - 3028 = 1216 \stackrel{?}{=} 14 \Leftrightarrow false$$

2. Y' = Z'?

$$Y' - Z' \stackrel{?}{=} sig_{static} \left\{ Y', Z' \right\} \Leftrightarrow 3028 - 4212 = -1184 \stackrel{?}{=} 18 \Leftrightarrow false$$

3. X' = Z'?

$$X' - Z' \stackrel{?}{=} sig_{static} \{X', Z'\} \Leftrightarrow 4244 - 4212 = 32 \stackrel{?}{=} 32 \Leftrightarrow true$$

4. Berechnung der dynamischen Signaturen zur Laufzeit:

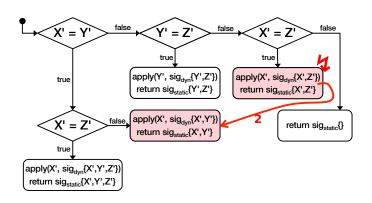
$$sig_{dyn}\{X',Z'\}=(X'-Z')=(4244-4212)=32$$

Fehlerszenario 2

- 5. $sig_{dyn}\{X',Z'\} \stackrel{?}{=} sig_{static}\{X,Z\} \Leftrightarrow 32 \stackrel{?}{=} 32 \Leftrightarrow true$
- 6. $X' = apply(X', sig_{dyn}\{X', Z'\}) = 4276$
- 7. Hier tritt nun der Kontrollflussfehler 2 ein
- 8. $B_E \leftarrow sig_{static} \{X', Y'\} = 14$
- 9. return (14)
- 10. Nachschlagen der zugrundeliegenden Variable mittels $B_{dyn} = 14$ (erste Variable der Konsensmenge), basierend auf den vorberechneten statischen Werten:

$$(result_{variable}, result_{extrasignature}) \leftarrow (X', B_X)$$

11. $inv_apply(result_{variable}, B_{dyn}) = inv_apply(4276, 14) = 4276 - 14 = 4262$



Fehlerszenario 2 (II)

12. Signaturverifikation:

check(4262, A,
$$B_X$$
): $\frac{4262-B_X}{A} = 7$ Rest: 18

13. Fehler erfolgreich detektiert: Dekodieren schlägt fehl

Aufgabenstellung

Aufgabe

- Absichern des Voters per EAN mittels CoRed-Ansatz
- Berechnungen mit codierten Werten
 - Berücksichtigung der (statischen) Signaturen
 - → Eigene Operationen mit konstanten Signaturwerten notwendig
 - → bspw. eigenes equals anstatt ==
- Jedes Replikat hat genau einen Ausgabewert (integer → enc_t): eine codierte Prüfsumme des Ergebnisses
 - \sim Festlegung für jeden der drei Ausgabewerte (X', Y', Z') jeweils unterschiedliche aber konstante Signatur (SIG_X, SIG_Y, SIG_Z)
- Nutzung des nächstgrößeren Datentyps X für den ursprünglichen Wert X'
 - Wahl einer Zahl A mit möglichst großem Hamming-Abstand unter Vermeidung möglicher Überläufe bei der Codierung
 - → Handhabbarkeit: nicht Super-As

Literatur I

Forin.

Vital coded microprocessor principles and application for various transit systems.

IFA-GCCT, pages 79–84, 1989.

