
Verlässliche Echtzeitsysteme
Übungen zur Vorlesung

Rolle der Programmiersprache

Phillip Raffeck, Tim Rheinfels, Simon Schuster, Peter Wägemann

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl Informatik 4 (Verteilte Systeme und Betriebssysteme)

https://sys.cs.fau.de

Wintersemester 2022

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) 1 – 30

https://sys.cs.fau.de

Die Programmiersprache C

secretlondon123 / CC BY-SA

(https://creativecommons.org/licenses/by-sa/2.0)

Programmieren in C
ihr könnt alle in C programmieren

ihr habt alle schon mit C gearbeitet

diverse Veranstaltungen: SP, SPiC, EZS, . . .

⇒ Dann sollte man sich ja auch mit C auskennen?

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 2 – 30

Die Programmiersprache C

secretlondon123 / CC BY-SA

(https://creativecommons.org/licenses/by-sa/2.0)

Programmieren in C
ihr könnt alle in C programmieren

ihr habt alle schon mit C gearbeitet

diverse Veranstaltungen: SP, SPiC, EZS, . . .

⇒ Dann sollte man sich ja auch mit C auskennen?

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 2 – 30

Frage 2 [1]

Zu was wird 1U > -1 ausgewertet?

1. 0

2. 1

3. nicht definiert

Erklärung

unsigned gewinnt bei impliziter Typumwandlung.

; 1U > -1U⇒ 1U > UINT_MAX

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 3 – 30

Frage 2 [1]

Zu was wird 1U > -1 ausgewertet?

1. 0

2. 1

3. nicht definiert

Erklärung

unsigned gewinnt bei impliziter Typumwandlung.

; 1U > -1U⇒ 1U > UINT_MAX

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 3 – 30

Frage 6 [1]

Zu was wird UINT_MAX + 1 ausgewertet?

1. 0

2. 1

3. INT_MIN

4. UINT_MIN

5. nicht definiert

Erklärung

Der C-Standard garantiert, dass UINT_MAX + 1 == 0

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 4 – 30

Frage 6 [1]

Zu was wird UINT_MAX + 1 ausgewertet?

1. 0

2. 1

3. INT_MIN

4. UINT_MIN

5. nicht definiert

Erklärung

Der C-Standard garantiert, dass UINT_MAX + 1 == 0

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 4 – 30

Frage 7 [1]

Zu was wird INT_MAX + 1 ausgewertet?

1. 0

2. 1

3. INT_MAX

4. UINT_MAX

5. nicht definiert

Erklärung

signed int-Überlauf ist nicht definiert.

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 5 – 30

Frage 7 [1]

Zu was wird INT_MAX + 1 ausgewertet?

1. 0

2. 1

3. INT_MAX

4. UINT_MAX

5. nicht definiert

Erklärung

signed int-Überlauf ist nicht definiert.

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 5 – 30

Frage 10 [1]

Angenommen x hat Typ int und ist positiv. Ist x << 1 . . .

1. definiert für alle Werte

2. definiert für manche Werte

3. definiert für keinen Wert

von x?

Erklärung

Es darf nicht in das Vorzeichenbit hineinverschoben werden

⇒ nicht definiert für große Werte von x

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 6 – 30

Frage 10 [1]

Angenommen x hat Typ int und ist positiv. Ist x << 1 . . .

1. definiert für alle Werte

2. definiert für manche Werte

3. definiert für keinen Wert

von x?

Erklärung

Es darf nicht in das Vorzeichenbit hineinverschoben werden

⇒ nicht definiert für große Werte von x

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 6 – 30

C Standard

Mehrere Iterationen:
C89, C99, C11, C18

Früher ANSI, heute ISO/IEC
Standards:

ANSI X3.159-1989
ISO/IEC 9899:1990
. . .

Unabhängiger Standard, von ISO
entwickelt

Beschreibt C Syntax & Semantik

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 7 – 30

C Standard II
ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.5 Multiplicative operators
Syntax

1 multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints

2 Each of the operands shall have arithmetic type. The operands of the % operator shall
have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary * operator is the product of the operands.

5 The result of the / operator is the quotient from the division of the first operand by the
second; the result of the % operator is the remainder. In both operations, if the value of
the second operand is zero, the behavior is undefined.

6 When integers are divided, the result of the / operator is the algebraic quotient with any
fractional part discarded.90) If the quotient a/b is representable, the expression
(a/b)*b + a%b shall equal a.

6.5.6 Additive operators
Syntax

1 additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints

2 For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an object type and the other shall have integer type. (Incrementing is
equivalent to adding 1.)

3 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

90) This is often called ‘‘truncation toward zero’’.

82 Language §6.5.6

Source: ISO/IEC 9899:TC3, S.94

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

2 EXAMPLE An example of locale-specific behavior is whether the islower function returns true for
characters other than the 26 lowercase Latin letters.

3.4.3
1 undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

2 NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

3 EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4
1 unspecified behavior

use of an unspecified value, or other behavior where this International Standard provides
two or more possibilities and imposes no further requirements on which is chosen in any
instance

2 EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

3.5
1 bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

2 NOTE It need not be possible to express the address of each individual bit of an object.

3.6
1 byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

2 NOTE 1 It is possible to express the address of each individual byte of an object uniquely.

3 NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit.

3.7
1 character

〈abstract〉 member of a set of elements used for the organization, control, or
representation of data

3.7.1
1 character

single-byte character
〈C〉 bit representation that fits in a byte

4 General §3.7.1

Source: ISO/IEC 9899:TC3, S.4

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 8 – 30

C Standard II
ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.5 Multiplicative operators
Syntax

1 multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints

2 Each of the operands shall have arithmetic type. The operands of the % operator shall
have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary * operator is the product of the operands.

5 The result of the / operator is the quotient from the division of the first operand by the
second; the result of the % operator is the remainder. In both operations, if the value of
the second operand is zero, the behavior is undefined.

6 When integers are divided, the result of the / operator is the algebraic quotient with any
fractional part discarded.90) If the quotient a/b is representable, the expression
(a/b)*b + a%b shall equal a.

6.5.6 Additive operators
Syntax

1 additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints

2 For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an object type and the other shall have integer type. (Incrementing is
equivalent to adding 1.)

3 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

90) This is often called ‘‘truncation toward zero’’.

82 Language §6.5.6

Source: ISO/IEC 9899:TC3, S.94

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

2 EXAMPLE An example of locale-specific behavior is whether the islower function returns true for
characters other than the 26 lowercase Latin letters.

3.4.3
1 undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

2 NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

3 EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4
1 unspecified behavior

use of an unspecified value, or other behavior where this International Standard provides
two or more possibilities and imposes no further requirements on which is chosen in any
instance

2 EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

3.5
1 bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

2 NOTE It need not be possible to express the address of each individual bit of an object.

3.6
1 byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

2 NOTE 1 It is possible to express the address of each individual byte of an object uniquely.

3 NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit.

3.7
1 character

〈abstract〉 member of a set of elements used for the organization, control, or
representation of data

3.7.1
1 character

single-byte character
〈C〉 bit representation that fits in a byte

4 General §3.7.1

Source: ISO/IEC 9899:TC3, S.4

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 8 – 30

C Standard II
ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.5 Multiplicative operators
Syntax

1 multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints

2 Each of the operands shall have arithmetic type. The operands of the % operator shall
have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary * operator is the product of the operands.

5 The result of the / operator is the quotient from the division of the first operand by the
second; the result of the % operator is the remainder. In both operations, if the value of
the second operand is zero, the behavior is undefined.

6 When integers are divided, the result of the / operator is the algebraic quotient with any
fractional part discarded.90) If the quotient a/b is representable, the expression
(a/b)*b + a%b shall equal a.

6.5.6 Additive operators
Syntax

1 additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

Constraints

2 For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an object type and the other shall have integer type. (Incrementing is
equivalent to adding 1.)

3 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

90) This is often called ‘‘truncation toward zero’’.

82 Language §6.5.6

Source: ISO/IEC 9899:TC3, S.94

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

2 EXAMPLE An example of locale-specific behavior is whether the islower function returns true for
characters other than the 26 lowercase Latin letters.

3.4.3
1 undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

2 NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

3 EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4
1 unspecified behavior

use of an unspecified value, or other behavior where this International Standard provides
two or more possibilities and imposes no further requirements on which is chosen in any
instance

2 EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

3.5
1 bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

2 NOTE It need not be possible to express the address of each individual bit of an object.

3.6
1 byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

2 NOTE 1 It is possible to express the address of each individual byte of an object uniquely.

3 NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit.

3.7
1 character

〈abstract〉 member of a set of elements used for the organization, control, or
representation of data

3.7.1
1 character

single-byte character
〈C〉 bit representation that fits in a byte

4 General §3.7.1

Source: ISO/IEC 9899:TC3, S.4

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 8 – 30

IEEE 754 (I)

IEEE Std 754-2019
IEEE Standard for Floating-Point Arithmetic

7.3 Division by zero 7.3.0

The divideByZero exception shall be signaled if and only if an exact infinite result is defined for an
operation on finite operands. The default result of divideByZero shall be an ∞ correctly signed according
to the operation:

― For division, when the divisor is zero and the dividend is a finite non-zero number, the sign of the
infinity is the exclusive OR of the operands’ signs (see 6.3).

― For logB(0) when logBFormat is a floating-point format, the sign of the infinity is minus (−∞).

7.4 Overflow 7.4.0

The overflow exception shall be signaled if and only if the destination format’s largest finite number is
exceeded in magnitude by what would have been the rounded floating-point result (see Clause 4) were the
exponent range unbounded. The default result shall be determined by the rounding-direction attribute and
the sign of the intermediate result as follows:

a) roundTiesToEven and roundTiesToAway carry all overflows to ∞ with the sign of the
intermediate result.

b) roundTowardZero carries all overflows to the format’s largest finite number with the sign of the
intermediate result.

c) roundTowardNegative carries positive overflows to the format’s largest finite number, and carries
negative overflows to −∞.

d) roundTowardPositive carries negative overflows to the format’s most negative finite number, and
carries positive overflows to +∞.

In addition, under default exception handling for overflow, the overflow flag shall be raised and the inexact
exception shall be signaled.

7.5 Underflow 7.5.0

The underflow exception shall be signaled when a tiny non-zero result is detected. For binary formats, this
shall be either:

a) after rounding — when a non-zero result computed as though the exponent range were unbounded
would lie strictly between ± b emin, or

b) before rounding — when a non-zero result computed as though both the exponent range and the
precision were unbounded would lie strictly between ± b emin.

The implementer shall choose how tininess is detected, but shall detect tininess in the same way for all
operations in radix two, including conversion operations under a binary rounding attribute.

For decimal formats, tininess is detected before rounding — when a non-zero result computed as though
both the exponent range and the precision were unbounded would lie strictly between ± b emin.

The default exception handling for underflow shall always deliver a rounded result. The method for
detecting tininess does not affect the rounded result delivered, which might be zero, subnormal, or ± b emin.

In addition, under default exception handling for underflow, if the rounded result is inexact — that is, it
differs from what would have been computed were both exponent range and precision unbounded — the
underflow flag shall be raised and the inexact (see 7.6) exception shall be signaled. If the rounded result is
exact, no flag is raised and no inexact exception is signaled. This is the only case in this standard of an
exception signal receiving default handling that does not raise the corresponding flag. Such an underflow
signal has no observable effect under default handling.

53
Copyright © 2019 IEEE. All rights reserved.

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on April 09,2020 at 13:30:11 UTC from IEEE Xplore. Restrictions apply.

Source: IEEE Standard 754 2019, S.53

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 9 – 30

IEEE 754 (I)

IEEE Std 754-2019
IEEE Standard for Floating-Point Arithmetic

7.3 Division by zero 7.3.0

The divideByZero exception shall be signaled if and only if an exact infinite result is defined for an
operation on finite operands. The default result of divideByZero shall be an ∞ correctly signed according
to the operation:

― For division, when the divisor is zero and the dividend is a finite non-zero number, the sign of the
infinity is the exclusive OR of the operands’ signs (see 6.3).

― For logB(0) when logBFormat is a floating-point format, the sign of the infinity is minus (−∞).

7.4 Overflow 7.4.0

The overflow exception shall be signaled if and only if the destination format’s largest finite number is
exceeded in magnitude by what would have been the rounded floating-point result (see Clause 4) were the
exponent range unbounded. The default result shall be determined by the rounding-direction attribute and
the sign of the intermediate result as follows:

a) roundTiesToEven and roundTiesToAway carry all overflows to ∞ with the sign of the
intermediate result.

b) roundTowardZero carries all overflows to the format’s largest finite number with the sign of the
intermediate result.

c) roundTowardNegative carries positive overflows to the format’s largest finite number, and carries
negative overflows to −∞.

d) roundTowardPositive carries negative overflows to the format’s most negative finite number, and
carries positive overflows to +∞.

In addition, under default exception handling for overflow, the overflow flag shall be raised and the inexact
exception shall be signaled.

7.5 Underflow 7.5.0

The underflow exception shall be signaled when a tiny non-zero result is detected. For binary formats, this
shall be either:

a) after rounding — when a non-zero result computed as though the exponent range were unbounded
would lie strictly between ± b emin, or

b) before rounding — when a non-zero result computed as though both the exponent range and the
precision were unbounded would lie strictly between ± b emin.

The implementer shall choose how tininess is detected, but shall detect tininess in the same way for all
operations in radix two, including conversion operations under a binary rounding attribute.

For decimal formats, tininess is detected before rounding — when a non-zero result computed as though
both the exponent range and the precision were unbounded would lie strictly between ± b emin.

The default exception handling for underflow shall always deliver a rounded result. The method for
detecting tininess does not affect the rounded result delivered, which might be zero, subnormal, or ± b emin.

In addition, under default exception handling for underflow, if the rounded result is inexact — that is, it
differs from what would have been computed were both exponent range and precision unbounded — the
underflow flag shall be raised and the inexact (see 7.6) exception shall be signaled. If the rounded result is
exact, no flag is raised and no inexact exception is signaled. This is the only case in this standard of an
exception signal receiving default handling that does not raise the corresponding flag. Such an underflow
signal has no observable effect under default handling.

53
Copyright © 2019 IEEE. All rights reserved.

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on April 09,2020 at 13:30:11 UTC from IEEE Xplore. Restrictions apply.

Source: IEEE Standard 754 2019, S.53

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 9 – 30

IEEE 754 (II)

IEEE Std 754-2019
IEEE Standard for Floating-Point Arithmetic

observable signals of the exceptions for other conditions, even if the operation is implemented in software
using other exception-signaling operations. Operations not specified by this standard, such as complex
arithmetic or certain transcendental functions, should signal exceptions according to the definitions below
for operations defined in this standard, but that might not always be economical. The signaling of
exceptions for operations not specified in this standard is language-defined.

NOTE — Redundant signals of an exception by the implementation of an operation are not detectable by
the user under default exception handling. Such redundant signals might be detectable by the user under
the recordException attribute for (recommended) alternate exception handling (see 8.2), and, in the case of
unordered-signaling predicates with a signaling NaN operand, under other alternate exception handling
attributes if sub-exceptions (see 8.1) are supported.

7.2 Invalid operation 7.2.0

The invalid operation exception is signaled if and only if there is no usefully definable result. In these cases
the operands are invalid for the operation to be performed.

For operations producing results in floating-point format, the default result of an operation that signals the
invalid operation exception shall be a quiet NaN that should provide some diagnostic information (see 6.2).
These operations are:

a) any general-computational operation on a signaling NaN (see 6.2), except for some conversions
(see 5.12)

b) multiplication: multiplication(0, ∞) or multiplication(∞, 0)

c) fusedMultiplyAdd: fusedMultiplyAdd(0, ∞, c) or fusedMultiplyAdd(∞, 0, c) unless c is a quiet
NaN; if c is a quiet NaN then it is implementation defined whether the invalid operation exception
is signaled

d) addition or subtraction or fusedMultiplyAdd: magnitude subtraction of infinities, such as:
addition(+∞, −∞)

e) division: division(0, 0) or division(∞, ∞)

f) remainder: remainder(x, y), when y is zero or x is infinite and neither is a NaN

g) squareRoot if the operand is less than zero

h) quantize when the result does not fit in the destination format or when one operand is finite and
the other is infinite

For operations producing no result in floating-point format, the operations that signal the invalid operation
exception are:

i) any signaling-computational operation on a signaling NaN (see 6.2); then, under default exception
handling, the operation is evaluated with quiet NaNs in place of the signaling NaN operands to
determine the result, which for unordered-signaling comparisons might signal another invalid
operation exception

j) conversion of a floating-point number to an integer format, when the source is a NaN, infinity, or
a value that would convert to an integer outside the range of the result format under the applicable
rounding attribute

k) comparison by way of unordered-signaling predicates listed in Table 5.2, when the operands are
unordered

l) logB(NaN), logB(∞), or logB(0), when logBFormat is an integer format (see 5.3.3).

52
Copyright © 2019 IEEE. All rights reserved.

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on April 09,2020 at 13:30:11 UTC from IEEE Xplore. Restrictions apply.

Source: IEEE Standard 754 2019, S.52

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 10 – 30

IEEE 754 (II)

IEEE Std 754-2019
IEEE Standard for Floating-Point Arithmetic

observable signals of the exceptions for other conditions, even if the operation is implemented in software
using other exception-signaling operations. Operations not specified by this standard, such as complex
arithmetic or certain transcendental functions, should signal exceptions according to the definitions below
for operations defined in this standard, but that might not always be economical. The signaling of
exceptions for operations not specified in this standard is language-defined.

NOTE — Redundant signals of an exception by the implementation of an operation are not detectable by
the user under default exception handling. Such redundant signals might be detectable by the user under
the recordException attribute for (recommended) alternate exception handling (see 8.2), and, in the case of
unordered-signaling predicates with a signaling NaN operand, under other alternate exception handling
attributes if sub-exceptions (see 8.1) are supported.

7.2 Invalid operation 7.2.0

The invalid operation exception is signaled if and only if there is no usefully definable result. In these cases
the operands are invalid for the operation to be performed.

For operations producing results in floating-point format, the default result of an operation that signals the
invalid operation exception shall be a quiet NaN that should provide some diagnostic information (see 6.2).
These operations are:

a) any general-computational operation on a signaling NaN (see 6.2), except for some conversions
(see 5.12)

b) multiplication: multiplication(0, ∞) or multiplication(∞, 0)

c) fusedMultiplyAdd: fusedMultiplyAdd(0, ∞, c) or fusedMultiplyAdd(∞, 0, c) unless c is a quiet
NaN; if c is a quiet NaN then it is implementation defined whether the invalid operation exception
is signaled

d) addition or subtraction or fusedMultiplyAdd: magnitude subtraction of infinities, such as:
addition(+∞, −∞)

e) division: division(0, 0) or division(∞, ∞)

f) remainder: remainder(x, y), when y is zero or x is infinite and neither is a NaN

g) squareRoot if the operand is less than zero

h) quantize when the result does not fit in the destination format or when one operand is finite and
the other is infinite

For operations producing no result in floating-point format, the operations that signal the invalid operation
exception are:

i) any signaling-computational operation on a signaling NaN (see 6.2); then, under default exception
handling, the operation is evaluated with quiet NaNs in place of the signaling NaN operands to
determine the result, which for unordered-signaling comparisons might signal another invalid
operation exception

j) conversion of a floating-point number to an integer format, when the source is a NaN, infinity, or
a value that would convert to an integer outside the range of the result format under the applicable
rounding attribute

k) comparison by way of unordered-signaling predicates listed in Table 5.2, when the operands are
unordered

l) logB(NaN), logB(∞), or logB(0), when logBFormat is an integer format (see 5.3.3).

52
Copyright © 2019 IEEE. All rights reserved.

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on April 09,2020 at 13:30:11 UTC from IEEE Xplore. Restrictions apply.

Source: IEEE Standard 754 2019, S.52

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 10 – 30

MISRA-C

51

Rule 12.6 (advisory):	 The operands of logical operators (&&, || and !) should be
effectively Boolean. Expressions that are effectively Boolean
should not be used as operands to operators other than (&&, ||, !,
=, ==, != and ?:).

[Koenig 48]
The logical operators &&, || and ! can be easily confused with the bitwise operators &, | and ~.
See “Boolean Expressions” in the glossary.

Rule 12.7 (required):	 Bitwise operators shall not be applied to operands whose
underlying type is signed.

[Implementation 17–19]
Bitwise operations (~, <<, <<=, >>, >>=, &, &=, ^, ^=, | and |=) are not normally meaningful on
signed integers. Problems can arise if, for example, a right shift moves the sign bit into the number,
or a left shift moves a numeric bit into the sign bit.
See section 6.10 for a description of underlying type.

Rule 12.8 (required):	 The right-hand operand of a shift operator shall lie between zero
and one less than the width in bits of the underlying type of the
left-hand operand.

[Undefined 32]
If, for example, the left-hand operand of a left-shift or right-shift is a 16-bit integer, then it is
important to ensure that this is shifted only by a number between 0 and 15 inclusive.
See section 6.10 for a description of underlying type.
There are various ways of ensuring this rule is followed. The simplest is for the right-hand operand
to be a constant (whose value can then be statically checked). Use of an unsigned integer type
will ensure that the operand is non-negative, so then only the upper limit needs to be checked
(dynamically at run time or by review). Otherwise both limits will need to be checked.

u8a = (uint8_t) (u8a << 7); /* compliant */
u8a = (uint8_t) (u8a << 9); /* not compliant */
u16a = (uint16_t)((uint16_t) u8a << 9); /* compliant */

Rule 12.9 (required):	 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

Applying the unary minus operator to an expression of type unsigned int or unsigned long generates
a result of type unsigned int or unsigned long respectively and is not a meaningful operation.
Applying unary minus to an operand of smaller unsigned integer type may generate a meaningful
signed result due to integral promotion, but this is not good practice.
See section 6.10 for a description of underlying type.

6.	 Rules (continued)

Source: MISRA-C:2004, S.51

57

Rule 14.2 (required):	 All non-null statements shall either:
have at least one side-effect however executed, or(a)	
cause control flow to change.(b)	

Any statement (other than a null statement) which has no side-effect and does not result in a
change of control flow will normally indicate a programming error, and therefore a static check
for such statements shall be performed. For example, the following statements do not necessarily
have side effects when executed:

/* assume uint16_t x;
 and uint16_t i; */
...
x >= 3u; /* not compliant: x is compared to 3,
 and the answer is discarded */

Note that “null statement” and “side effect” are defined in ISO/IEC 9899:1990 [2] sections 6.6.3
and 5.1.2.3 respectively.

Rule 14.3 (required):	 Before preprocessing, a null statement shall only occur on a line
by itself; it may be followed by a comment provided that the first
character following the null statement is a white‑space character.

Null statements should not normally be deliberately included, but where they are used they shall
appear on a line by themselves. White‑space characters may precede the null statement to preserve
indentation. If a comment follows the null statement then at least one white‑space character shall
separate the null statement from the comment. The use of a white‑space character to separate the
null statement from any following comment is required because it provides an important visual cue
to reviewers. Following this rule enables a static checking tool to warn of null statements appearing
on a line with other text, which would normally indicate a programming error. For example:

while ((port & 0x80) == 0)
{
 ; /* wait for pin - Compliant */
 /* wait for pin */ ; /* Not compliant, comment before ; */
 ;/* wait for pin - Not compliant, no white-space char after ; */
}

Rule 14.4 (required):	 The goto statement shall not be used.

Rule 14.5 (required):	 The continue statement shall not be used.

Rule 14.6 (required):	 For any iteration statement there shall be at most one break
statement used for loop termination.

These rules are in the interests of good structured programming. One break statement is allowed
in a loop since this allows, for example, for dual outcome loops or for optimal coding.

6.	 Rules (continued)

Source: MISRA-C:2004, S.57

67

struct tnode * pt; /* tnode is incomplete at this point */

struct tnode
{
 int count;
 struct tnode *left;
 struct tnode * right;
}; /* type tnode is now complete */

Rule 18.2 (required):	 An object shall not be assigned to an overlapping object.
[Undefined 34, 55]

The behaviour is undefined when two objects are created which have some overlap in memory
and one is copied to the other.

Rule 18.3 (required)	 An area of memory shall not be reused for unrelated purposes.

This rule refers to the technique of using memory to store some data, and then using the same
memory to store unrelated data at some other time during the execution of the program. Clearly
it relies on the two different pieces of data existing at disjoint periods of the program’s execution,
and never being required simultaneously.
This practice is not recommended for safety-related systems as it brings with it a number of
dangers. For example: a program might try to access data of one type from the location when
actually it is storing a value of the other type (e.g. due to an interrupt). The two types of data
may align differently in the storage, and encroach upon other data. Therefore the data may not
be correctly initialised every time the usage switches. The practice is particularly dangerous in
concurrent systems.
However it is recognised that sometimes such storage sharing may be required for reasons of
efficiency. Where this is the case it is essential that measures are taken to ensure that the wrong
type of data can never be accessed, that data is always properly initialised and that it is not possible
to access parts of other data (e.g. due to alignment differences). The measures taken shall be
documented and justified in the deviation that is raised against this rule.
This might be achieved by the use of unions, or various other means.
Note that there is no intention in the MISRA-C guidelines to place restrictions on how a compiler
actually translates source code as the user generally has no effective control over this. So for
example, memory allocation within the compiler whether dynamic heap, dynamic stack or static,
may vary significantly with only slight code changes even at the same level of optimisation. (Note
also that some optimisation may legitimately take place even when the user makes no specific
request for this.)

Rule 18.4 (required):	 Unions shall not be used.
[Implementation 27]

Rule 18.3 prohibits the reuse of memory areas for unrelated purposes. However, even when
memory is being reused for related purposes, there is still a risk that the data may be misinterpreted.
Therefore, this rule prohibits the use of unions for any purpose.

6.	 Rules (continued)

Source: MISRA-C:2004, S.67

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 11 – 30

MISRA-C

51

Rule 12.6 (advisory):	 The operands of logical operators (&&, || and !) should be
effectively Boolean. Expressions that are effectively Boolean
should not be used as operands to operators other than (&&, ||, !,
=, ==, != and ?:).

[Koenig 48]
The logical operators &&, || and ! can be easily confused with the bitwise operators &, | and ~.
See “Boolean Expressions” in the glossary.

Rule 12.7 (required):	 Bitwise operators shall not be applied to operands whose
underlying type is signed.

[Implementation 17–19]
Bitwise operations (~, <<, <<=, >>, >>=, &, &=, ^, ^=, | and |=) are not normally meaningful on
signed integers. Problems can arise if, for example, a right shift moves the sign bit into the number,
or a left shift moves a numeric bit into the sign bit.
See section 6.10 for a description of underlying type.

Rule 12.8 (required):	 The right-hand operand of a shift operator shall lie between zero
and one less than the width in bits of the underlying type of the
left-hand operand.

[Undefined 32]
If, for example, the left-hand operand of a left-shift or right-shift is a 16-bit integer, then it is
important to ensure that this is shifted only by a number between 0 and 15 inclusive.
See section 6.10 for a description of underlying type.
There are various ways of ensuring this rule is followed. The simplest is for the right-hand operand
to be a constant (whose value can then be statically checked). Use of an unsigned integer type
will ensure that the operand is non-negative, so then only the upper limit needs to be checked
(dynamically at run time or by review). Otherwise both limits will need to be checked.

u8a = (uint8_t) (u8a << 7); /* compliant */
u8a = (uint8_t) (u8a << 9); /* not compliant */
u16a = (uint16_t)((uint16_t) u8a << 9); /* compliant */

Rule 12.9 (required):	 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

Applying the unary minus operator to an expression of type unsigned int or unsigned long generates
a result of type unsigned int or unsigned long respectively and is not a meaningful operation.
Applying unary minus to an operand of smaller unsigned integer type may generate a meaningful
signed result due to integral promotion, but this is not good practice.
See section 6.10 for a description of underlying type.

6.	 Rules (continued)

Source: MISRA-C:2004, S.51

57

Rule 14.2 (required):	 All non-null statements shall either:
have at least one side-effect however executed, or(a)	
cause control flow to change.(b)	

Any statement (other than a null statement) which has no side-effect and does not result in a
change of control flow will normally indicate a programming error, and therefore a static check
for such statements shall be performed. For example, the following statements do not necessarily
have side effects when executed:

/* assume uint16_t x;
 and uint16_t i; */
...
x >= 3u; /* not compliant: x is compared to 3,
 and the answer is discarded */

Note that “null statement” and “side effect” are defined in ISO/IEC 9899:1990 [2] sections 6.6.3
and 5.1.2.3 respectively.

Rule 14.3 (required):	 Before preprocessing, a null statement shall only occur on a line
by itself; it may be followed by a comment provided that the first
character following the null statement is a white‑space character.

Null statements should not normally be deliberately included, but where they are used they shall
appear on a line by themselves. White‑space characters may precede the null statement to preserve
indentation. If a comment follows the null statement then at least one white‑space character shall
separate the null statement from the comment. The use of a white‑space character to separate the
null statement from any following comment is required because it provides an important visual cue
to reviewers. Following this rule enables a static checking tool to warn of null statements appearing
on a line with other text, which would normally indicate a programming error. For example:

while ((port & 0x80) == 0)
{
 ; /* wait for pin - Compliant */
 /* wait for pin */ ; /* Not compliant, comment before ; */
 ;/* wait for pin - Not compliant, no white-space char after ; */
}

Rule 14.4 (required):	 The goto statement shall not be used.

Rule 14.5 (required):	 The continue statement shall not be used.

Rule 14.6 (required):	 For any iteration statement there shall be at most one break
statement used for loop termination.

These rules are in the interests of good structured programming. One break statement is allowed
in a loop since this allows, for example, for dual outcome loops or for optimal coding.

6.	 Rules (continued)

Source: MISRA-C:2004, S.57

67

struct tnode * pt; /* tnode is incomplete at this point */

struct tnode
{
 int count;
 struct tnode *left;
 struct tnode * right;
}; /* type tnode is now complete */

Rule 18.2 (required):	 An object shall not be assigned to an overlapping object.
[Undefined 34, 55]

The behaviour is undefined when two objects are created which have some overlap in memory
and one is copied to the other.

Rule 18.3 (required)	 An area of memory shall not be reused for unrelated purposes.

This rule refers to the technique of using memory to store some data, and then using the same
memory to store unrelated data at some other time during the execution of the program. Clearly
it relies on the two different pieces of data existing at disjoint periods of the program’s execution,
and never being required simultaneously.
This practice is not recommended for safety-related systems as it brings with it a number of
dangers. For example: a program might try to access data of one type from the location when
actually it is storing a value of the other type (e.g. due to an interrupt). The two types of data
may align differently in the storage, and encroach upon other data. Therefore the data may not
be correctly initialised every time the usage switches. The practice is particularly dangerous in
concurrent systems.
However it is recognised that sometimes such storage sharing may be required for reasons of
efficiency. Where this is the case it is essential that measures are taken to ensure that the wrong
type of data can never be accessed, that data is always properly initialised and that it is not possible
to access parts of other data (e.g. due to alignment differences). The measures taken shall be
documented and justified in the deviation that is raised against this rule.
This might be achieved by the use of unions, or various other means.
Note that there is no intention in the MISRA-C guidelines to place restrictions on how a compiler
actually translates source code as the user generally has no effective control over this. So for
example, memory allocation within the compiler whether dynamic heap, dynamic stack or static,
may vary significantly with only slight code changes even at the same level of optimisation. (Note
also that some optimisation may legitimately take place even when the user makes no specific
request for this.)

Rule 18.4 (required):	 Unions shall not be used.
[Implementation 27]

Rule 18.3 prohibits the reuse of memory areas for unrelated purposes. However, even when
memory is being reused for related purposes, there is still a risk that the data may be misinterpreted.
Therefore, this rule prohibits the use of unions for any purpose.

6.	 Rules (continued)

Source: MISRA-C:2004, S.67

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 11 – 30

MISRA-C

51

Rule 12.6 (advisory):	 The operands of logical operators (&&, || and !) should be
effectively Boolean. Expressions that are effectively Boolean
should not be used as operands to operators other than (&&, ||, !,
=, ==, != and ?:).

[Koenig 48]
The logical operators &&, || and ! can be easily confused with the bitwise operators &, | and ~.
See “Boolean Expressions” in the glossary.

Rule 12.7 (required):	 Bitwise operators shall not be applied to operands whose
underlying type is signed.

[Implementation 17–19]
Bitwise operations (~, <<, <<=, >>, >>=, &, &=, ^, ^=, | and |=) are not normally meaningful on
signed integers. Problems can arise if, for example, a right shift moves the sign bit into the number,
or a left shift moves a numeric bit into the sign bit.
See section 6.10 for a description of underlying type.

Rule 12.8 (required):	 The right-hand operand of a shift operator shall lie between zero
and one less than the width in bits of the underlying type of the
left-hand operand.

[Undefined 32]
If, for example, the left-hand operand of a left-shift or right-shift is a 16-bit integer, then it is
important to ensure that this is shifted only by a number between 0 and 15 inclusive.
See section 6.10 for a description of underlying type.
There are various ways of ensuring this rule is followed. The simplest is for the right-hand operand
to be a constant (whose value can then be statically checked). Use of an unsigned integer type
will ensure that the operand is non-negative, so then only the upper limit needs to be checked
(dynamically at run time or by review). Otherwise both limits will need to be checked.

u8a = (uint8_t) (u8a << 7); /* compliant */
u8a = (uint8_t) (u8a << 9); /* not compliant */
u16a = (uint16_t)((uint16_t) u8a << 9); /* compliant */

Rule 12.9 (required):	 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

Applying the unary minus operator to an expression of type unsigned int or unsigned long generates
a result of type unsigned int or unsigned long respectively and is not a meaningful operation.
Applying unary minus to an operand of smaller unsigned integer type may generate a meaningful
signed result due to integral promotion, but this is not good practice.
See section 6.10 for a description of underlying type.

6.	 Rules (continued)

Source: MISRA-C:2004, S.51

57

Rule 14.2 (required):	 All non-null statements shall either:
have at least one side-effect however executed, or(a)	
cause control flow to change.(b)	

Any statement (other than a null statement) which has no side-effect and does not result in a
change of control flow will normally indicate a programming error, and therefore a static check
for such statements shall be performed. For example, the following statements do not necessarily
have side effects when executed:

/* assume uint16_t x;
 and uint16_t i; */
...
x >= 3u; /* not compliant: x is compared to 3,
 and the answer is discarded */

Note that “null statement” and “side effect” are defined in ISO/IEC 9899:1990 [2] sections 6.6.3
and 5.1.2.3 respectively.

Rule 14.3 (required):	 Before preprocessing, a null statement shall only occur on a line
by itself; it may be followed by a comment provided that the first
character following the null statement is a white‑space character.

Null statements should not normally be deliberately included, but where they are used they shall
appear on a line by themselves. White‑space characters may precede the null statement to preserve
indentation. If a comment follows the null statement then at least one white‑space character shall
separate the null statement from the comment. The use of a white‑space character to separate the
null statement from any following comment is required because it provides an important visual cue
to reviewers. Following this rule enables a static checking tool to warn of null statements appearing
on a line with other text, which would normally indicate a programming error. For example:

while ((port & 0x80) == 0)
{
 ; /* wait for pin - Compliant */
 /* wait for pin */ ; /* Not compliant, comment before ; */
 ;/* wait for pin - Not compliant, no white-space char after ; */
}

Rule 14.4 (required):	 The goto statement shall not be used.

Rule 14.5 (required):	 The continue statement shall not be used.

Rule 14.6 (required):	 For any iteration statement there shall be at most one break
statement used for loop termination.

These rules are in the interests of good structured programming. One break statement is allowed
in a loop since this allows, for example, for dual outcome loops or for optimal coding.

6.	 Rules (continued)

Source: MISRA-C:2004, S.57

67

struct tnode * pt; /* tnode is incomplete at this point */

struct tnode
{
 int count;
 struct tnode *left;
 struct tnode * right;
}; /* type tnode is now complete */

Rule 18.2 (required):	 An object shall not be assigned to an overlapping object.
[Undefined 34, 55]

The behaviour is undefined when two objects are created which have some overlap in memory
and one is copied to the other.

Rule 18.3 (required)	 An area of memory shall not be reused for unrelated purposes.

This rule refers to the technique of using memory to store some data, and then using the same
memory to store unrelated data at some other time during the execution of the program. Clearly
it relies on the two different pieces of data existing at disjoint periods of the program’s execution,
and never being required simultaneously.
This practice is not recommended for safety-related systems as it brings with it a number of
dangers. For example: a program might try to access data of one type from the location when
actually it is storing a value of the other type (e.g. due to an interrupt). The two types of data
may align differently in the storage, and encroach upon other data. Therefore the data may not
be correctly initialised every time the usage switches. The practice is particularly dangerous in
concurrent systems.
However it is recognised that sometimes such storage sharing may be required for reasons of
efficiency. Where this is the case it is essential that measures are taken to ensure that the wrong
type of data can never be accessed, that data is always properly initialised and that it is not possible
to access parts of other data (e.g. due to alignment differences). The measures taken shall be
documented and justified in the deviation that is raised against this rule.
This might be achieved by the use of unions, or various other means.
Note that there is no intention in the MISRA-C guidelines to place restrictions on how a compiler
actually translates source code as the user generally has no effective control over this. So for
example, memory allocation within the compiler whether dynamic heap, dynamic stack or static,
may vary significantly with only slight code changes even at the same level of optimisation. (Note
also that some optimisation may legitimately take place even when the user makes no specific
request for this.)

Rule 18.4 (required):	 Unions shall not be used.
[Implementation 27]

Rule 18.3 prohibits the reuse of memory areas for unrelated purposes. However, even when
memory is being reused for related purposes, there is still a risk that the data may be misinterpreted.
Therefore, this rule prohibits the use of unions for any purpose.

6.	 Rules (continued)

Source: MISRA-C:2004, S.67

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Die Programmiersprache C 11 – 30

Defensives Programmieren

C bietet viele subtile Fehlermöglichkeiten

Wie verhält man sich als Programmierer richtig?

Defensives Programmieren

; beispielhaft anhand von Ganzzahloperationen

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 12 – 30

Addition

Was soll da schon schiefgehen...
1 unsigned int func(unsigned int a, unsigned int b) {
2 return a + b;
3 }

Vorbedingungstest
1 #include <limits.h>
2 unsigned int func(unsigned int a, unsigned int b) {
3 if (UINT_MAX - a < b) { raise("wraparound"); }
4 return a + b;
5 }

Nachbedingungstest
1 unsigned int func(unsigned int a, unsigned int b) {
2 unsigned int ret = a + b;
3 if (ret < a) { raise("wraparound"); }
4 return ret;
5 }

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 13 – 30

Addition

Was soll da schon schiefgehen...
1 unsigned int func(unsigned int a, unsigned int b) {
2 return a + b;
3 }

Vorbedingungstest
1 #include <limits.h>
2 unsigned int func(unsigned int a, unsigned int b) {
3 if (UINT_MAX - a < b) { raise("wraparound"); }
4 return a + b;
5 }

Nachbedingungstest
1 unsigned int func(unsigned int a, unsigned int b) {
2 unsigned int ret = a + b;
3 if (ret < a) { raise("wraparound"); }
4 return ret;
5 }

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 13 – 30

Multiplikation

Was soll da schon schiefgehen...
1 unsigned int func(unsigned int a, unsigned int b) {
2 return a * b;
3 }

Vorbedingungstest
1 #include <limits.h>
2 unsigned int func(unsigned int a, unsigned int b) {
3 if (a == 0 or b == 0) { return 0; }
4 if (UINT_MAX / a < b) { raise("wraparound"); }
5 return a * b;
6 }

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 15 – 30

Multiplikation

Was soll da schon schiefgehen...
1 unsigned int func(unsigned int a, unsigned int b) {
2 return a * b;
3 }

Vorbedingungstest
1 #include <limits.h>
2 unsigned int func(unsigned int a, unsigned int b) {
3 if (a == 0 or b == 0) { return 0; }
4 if (UINT_MAX / a < b) { raise("wraparound"); }
5 return a * b;
6 }

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 15 – 30

Addition

Was soll da schon schiefgehen...
1 signed int func(signed int a, signed int b) {
2 return a + b;
3 }

Vorbedingungstest
1 #include <iso646.h>
2 #include <limits.h>
3 signed int func(signed int a, signed int b) {
4 if ((b > 0 and a > INT_MAX - b)
5 or (b < 0 and a < (INT_MIN - b))) { raise("overflow"); }
6 return a + b;
7 }

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 20 – 30

Addition

Was soll da schon schiefgehen...
1 signed int func(signed int a, signed int b) {
2 return a + b;
3 }

Vorbedingungstest
1 #include <iso646.h>
2 #include <limits.h>
3 signed int func(signed int a, signed int b) {
4 if ((b > 0 and a > INT_MAX - b)
5 or (b < 0 and a < (INT_MIN - b))) { raise("overflow"); }
6 return a + b;
7 }

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 20 – 30

Division

Was soll da schon schiefgehen...
1 signed long func(signed long a, signed long b) {
2 return a / b;
3 }

Vorbedingungstest
1 #include <iso646.h>
2 #include <limits.h>
3 signed long func(signed long a, signed long b) {
4 if (b == 0) { raise("division by 0"); }
5 return a / b;
6 }

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 22 – 30

Division

Was soll da schon schiefgehen...
1 signed long func(signed long a, signed long b) {
2 return a / b;
3 }

Vorbedingungstest
1 #include <iso646.h>
2 #include <limits.h>
3 signed long func(signed long a, signed long b) {
4 if (b == 0) { raise("division by 0"); }
5 return a / b;
6 }

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 22 – 30

Division

Reicht das schon?

Was soll da schon schiefgehen...
1 signed long func(signed long a, signed long b) {
2 if (b == 0) { raise("division by 0"); }
3 return a / b;
4 }

Vorbedingungstest
1 #include <iso646.h>
2 #include <limits.h>
3 signed long func(signed long a, signed long b) {
4 if (b == 0) { raise("division by zero"); }
5 if (a == LONG_MIN and b == -1) { raise("overflow"); }
6 return a / b;
7 }

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 23 – 30

Division

Reicht das schon?

Was soll da schon schiefgehen...
1 signed long func(signed long a, signed long b) {
2 if (b == 0) { raise("division by 0"); }
3 return a / b;
4 }

Vorbedingungstest
1 #include <iso646.h>
2 #include <limits.h>
3 signed long func(signed long a, signed long b) {
4 if (b == 0) { raise("division by zero"); }
5 if (a == LONG_MIN and b == -1) { raise("overflow"); }
6 return a / b;
7 }

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 23 – 30

Weitere Maßnahmen (I)

Konstruktiver Ausschluss
Einhalten der Grenzbereiche durch Verifikation sichergestellt

beweisbare Sicherheit

Garantiertes Ausnahmeverhalten
auf Sprachebene

Rust: Operationen mit Überprüfung (bspw. checked_add)
D: Operationen mit Überprüfung: checkedint
Ada: Constraint_Error bei Überläufen

durch die Hardware ; MIPS

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 27 – 30

Weitere Maßnahmen (II)

Softwareseitige Maßnahmen
compilergestützt

gcc built-in functions
__builtin_{add,sub,mul}_overflow

spezielle Warnungen nutzen
-W-sign-compare, -W-sign-conversion
-W-strict-overflow, -W-shift-overflow

mittels Bibliotheken
bspw. Safe Numerics von boost.org

Keine Patentlösung
abhängig von Anwendung und System

muss beim Systementwurf bedacht werden

zieht sich durch die gesamte Systementwicklung

C macht es einem hier nicht einfach

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 28 – 30

Fazit

Rolle der Programmiersprache
definiertes Verhalten in Sprachstandards

Grenzen dieses Verhaltens
; undefiniertes Verhalten

C ist zweischneidige Wahl für verlässliche, eingebettete Entwicklung

Konventionen und Werkzeuge nötig und sinnvoll

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Abfangen von Integer-Fehlern 29 – 30

Literatur I

John Regher.
A quiz about integers in c.

Raffeck, Rheinfels, Schuster, Wägemann VEZS (WS22) Literatur 30 – 30

