Exercises in System Level Programming (SLP) -
Summer Term 2025

Exercise 2

Maxim Ritter von Onciul
Eva Dengler

Lehrstuhl fiir Informatik 4
Friedrich-Alexander-Universitat Erlangen-Niirnberg

O 8"! |l| Friedrich-Alexander-Universitat
Lehrstuhl fiir Informatik 4
Systemsoftware I J H

Variables

Usage von int

The size of the int type is not defined exactly
For example on ATMEGA328PB: 16 bit

= Especially in the context of pC, this can yield slower code and/or
be a potential source for errors

For working on the assignments, we decided
= Usage of int counts as an error
= Instead: Use types defined in stdint.h: int8_t, uint8_t,
intl16_t,uintl16_t, etc.
Range of value
= limits.h: INT8_MAX, INT8_MIN, ...

m Memory is limited and therefore expensive on pC
(SPICBOARD/ATMEGA328PB only has 2048 byte SRAM)

~ Only use as little memory as necessary!

Typedefs & Enums VY

#define PB3 3

typedef enum {
BUTTONO = 0, BUTTON1 = 1
} BUTTON;

typedef enum {
PRESSED = 0, RELEASED = 1, UNKNOWN = 2
} BUTTONSTATE;

void main(void) {
/% .. %/
PORTB |= (1 << PB3); // not (1 << 3)

// Declaration: BUTTONSTATE sb_button_getState(BUTTON btn);
BUTTONSTATE state = sb_button_getState(BUTTONO); // not

— sb_button_getState(0)

/% .. %/

m Use predefined types
m Only use explicit integer values if necessary

Bits & Bytes

Number Systems

m Numbers can be represented using different bases
= Usually: decimal (10), hexadecimal (16), octal (8) and binary (2)
= Nomenclature:

= Bits: Digits of binary numbers
= Nibbles: Groups of 4 bits
= Bytes: Groups of 8 bits

Bit Operations

m Bit operations: Bitwise logical expressions

m Possible operations:

~ & | o 0 ~lo|1

1 0] o1
1 1|o 1 1112]|o0
not and or exclusive

or

Bit Operations i

m Bit operations: Bitwise logical expressions

m Possible operations:

~ &|lo|a I lo| 1 ~lo|1
1 o|lo|o olo]|1a olo]1
1|0 1|o|1 1111 1112]|o0
not and or exclusive
or
m Example:
1100, 1100, 1100,
~ 1001, & 1001, | 1001, ~ 1001,

0110, 1000, 1101, 0101,

Shift Operations

m Example:

uint8_t x = 0x9d; o|o 1/1|0/|1

X = x << 2; ﬂ---ﬂ-ﬂﬂ
[ofofofa]afafofu]

X = X > 2; o|o|o

m Setting single bits:

(1 << 0) loJoJofo]o]o]o]1]
(1 << 3) (ofofofof1]o]o]o]
(1<<3)1(1<<0) [o[o]ofJo[1a]o]o]1]
m Caution:

When shifting signed variables, the behaviour of the
>>-operator is not well defined in every case.

Assignment: snake

assignment: snake

m Snake consisting of adjecent LEDs
m Length (1 to 5 LEDs) is configured with the potentiometer
(POTI)
m Speed depends on the environment brightness (PHOTO)
~ The brighter the environment is, the faster the snake should move
= Mode of the snake can be toggled with a button (BUTTONO)

= Normal: Switched on LEDs represent the snake
= Inverted: Switched off LEDs represent the snake

= You should work on the assignment in teams of two:
The submit scripts asks for your partner

General Remarks

m Variables in functions behave similar to Java/Python
~ To solve the assignment, only local variables are necessary

m The C compiler reads files from top to bottom
~ Functions have to be declared in the right order:

1. wait()
2. drawsnake()
3. main()

= Details on compiler internals are discussed in the lecture.

Description of the Snake

Position of its head

= Number associated with a LED

= Range of value {0,1,...,7}
Length of the snake

= Integer in range of {1,2,...,5}
Mode of the snake

= Normal or inverted
= Can be represented as o and 1

Speed of the snake
= Here: Number of iterations of an active waiting loop

Divide-and-conquer

m Basic program flow: Which steps do always repeat?
m Prevent duplicate code:
~ Reoccurring problems can be addressed by helper functions

10

Basic Rundown snake ©

m Basic program flow: Represent snake, move snake, ...

m Pseudo code:
(W void main(void) {
while(1) {
// calculate length
length = ...

// draw snake
drawSnake(head, length, mode);

// put head to next position

// wait and determine mode

} // end of main loop
}

Representation of the Snake

m Parameters of representation
= Position of the head
= Length
= Mode

m Function signature:
void drawSnake(uint8_t head, uint8_t length,
< uint8_t modus)

m Representation depends on following parameters:
= Normal mode (glowing snake):

— Switch on all LEDs that belong to the snake
— Switch off all remaining LEDs

=« Inverted mode (dark snake):

— Switch off the LEDs belonging to the snake
— Switch on all remaining LEDs

12

The Modulo Operator

m Moving the snake
= Modify the position of the head independent of the direction of
movement
= Problem: What happens at the end of the LED band?
m A solution: The modulo operator %
= Remainder of an integer division

= Attention: In C the result is negative for negative divisors
= Example:b = a % 4;

13

Edge Detection without Interrupts

m Active waiting between movements of the snake
= Detect whether the button has been pressed
= Detect an edge by cyclic polling the level
= Differentiate between active-high & active-low
— Not relevant for implementation, use PRESSED and RELEASED
= Later: Implementation using interrupts

Button (active low)

V ST e T
1o
0] .t
old_state 1 1 1 1 0 0 0 1
VAV VAV AV BV AV .
new_state 1 1 1 000 0 1 1

14

Hands-on: Signal Lamp

Screencast: https://www.video.uni-erlangen.de/clip/id/14038

https://www.video.uni-erlangen.de/clip/id/14038

Hands-on: Signal Lamp

Send Morse signals via REDO
Controllable with BUTTON1
Usage of library functions for button and LED

Documentation of the library inside the SPiC IDE or via
https://sys.cs.fau.de/lehre/ss25/spic/uebung/spicboard/libapi

Insert comments in the source code

16

https://sys.cs.fau.de/lehre/ss25/spic/uebung/spicboard/libapi

	Variables
	Usage of int
	Typedefs & Enums

	Bits & Bytes
	Bit Operations
	Shift Operations

	Assignment: snake
	General Remarks
	Description of the Snake
	Division into Subproblems

	Hands-on: Signal Lamp

