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Organization of Memory

int a; // a: global, uninitialized
Where does the
memory for the-
se variables come
from?

int b = 1; // b: global, initialized
const int c = 2; // c: global, const

void main(void) {
static int s = 3; // s: local, static, initialized
int x, y; // x: local, auto; y: local, auto
char *p = malloc(100); // p: local, auto; *p: heap (100 byte)

}

Static allocation – allocation during compilation / linking
Concerns all global/static variables and the code itself ↪→ 12–5
Allocation by getting placed into a section
.text – contains program code main()
.bss – contains all variables initialized with 0 a

.data – contains all variables initialized with other values b,s
.rodata – contains all constant variables c

Dynamic allocation – allocated during runtime
Concerns all local automatic variables and explicitly allocated memory
Stack – contains all auto variables that are currently alive x,y,p
Heap – contains with malloc() explictly allocated memory areas *p
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Organization of Memory on a µC

© klsw System-Level Programming (ST 25) 34 Organization of Memory – . . . on a µController 34–2
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Organization of Memory with an OS
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Organization of Memory with an OS (continued)
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Organization of Memory with an OS (continued)
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