
System-Level Programming

34 Organization of Memory

Peter Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

34
-S

pe
ic

he
r-

La
yo

ut
_

en

http://sys.cs.fau.de/lehre/ss25


Organization of Memory

int a; // a: global, uninitialized
Where does the
memory for the-
se variables come
from?

int b = 1; // b: global, initialized
const int c = 2; // c: global, const

void main(void) {
static int s = 3; // s: local, static, initialized
int x, y; // x: local, auto; y: local, auto
char *p = malloc(100); // p: local, auto; *p: heap (100 byte)

}

Static allocation – allocation during compilation / linking
Concerns all global/static variables and the code itself ↪→ 12–5
Allocation by getting placed into a section
.text – contains program code main()
.bss – contains all variables initialized with 0 a

.data – contains all variables initialized with other values b,s
.rodata – contains all constant variables c

Dynamic allocation – allocated during runtime
Concerns all local automatic variables and explicitly allocated memory
Stack – contains all auto variables that are currently alive x,y,p
Heap – contains with malloc() explictly allocated memory areas *p

© klsw System-Level Programming (ST 25) 34 Organization of Memory – Introduction 34–1

34
-S

pe
ic

he
r-

La
yo

ut
_

en



Organization of Memory

int a; // a: global, uninitialized
Where does the
memory for the-
se variables come
from?

int b = 1; // b: global, initialized
const int c = 2; // c: global, const

void main(void) {
static int s = 3; // s: local, static, initialized
int x, y; // x: local, auto; y: local, auto
char *p = malloc(100); // p: local, auto; *p: heap (100 byte)

}

Static allocation – allocation during compilation / linking
Concerns all global/static variables and the code itself ↪→ 12–5
Allocation by getting placed into a section
.text – contains program code main()
.bss – contains all variables initialized with 0 a

.data – contains all variables initialized with other values b,s
.rodata – contains all constant variables c

Dynamic allocation – allocated during runtime
Concerns all local automatic variables and explicitly allocated memory
Stack – contains all auto variables that are currently alive x,y,p
Heap – contains with malloc() explictly allocated memory areas *p

© klsw System-Level Programming (ST 25) 34 Organization of Memory – Introduction 34–1

34
-S

pe
ic

he
r-

La
yo

ut
_

en



Organization of Memory

int a; // a: global, uninitialized
Where does the
memory for the-
se variables come
from?

int b = 1; // b: global, initialized
const int c = 2; // c: global, const

void main(void) {
static int s = 3; // s: local, static, initialized
int x, y; // x: local, auto; y: local, auto
char *p = malloc(100); // p: local, auto; *p: heap (100 byte)

}

Static allocation – allocation during compilation / linking
Concerns all global/static variables and the code itself ↪→ 12–5
Allocation by getting placed into a section
.text – contains program code main()
.bss – contains all variables initialized with 0 a

.data – contains all variables initialized with other values b,s
.rodata – contains all constant variables c

Dynamic allocation – allocated during runtime
Concerns all local automatic variables and explicitly allocated memory
Stack – contains all auto variables that are currently alive x,y,p
Heap – contains with malloc() explictly allocated memory areas *p

© klsw System-Level Programming (ST 25) 34 Organization of Memory – Introduction 34–1

34
-S

pe
ic

he
r-

La
yo

ut
_

en



Organization of Memory on a µC

© klsw System-Level Programming (ST 25) 34 Organization of Memory – . . . on a µController 34–2

34
-S

pe
ic

he
r-

La
yo

ut
_

en



Organization of Memory with an OS

© klsw System-Level Programming (ST 25) 34 Organization of Memory – . . . on a µController 34–3

34
-S

pe
ic

he
r-

La
yo

ut
_

en



Organization of Memory with an OS (continued)

© klsw System-Level Programming (ST 25) 34 Organization of Memory – . . . on a µController 34–4

34
-S

pe
ic

he
r-

La
yo

ut
_

en



Organization of Memory with an OS (continued)

© klsw System-Level Programming (ST 25) 34 Organization of Memory – . . . on a µController 34–5

34
-S

pe
ic

he
r-

La
yo

ut
_

en


	34 Organization of Memory 
	Introduction 
	…on a µController 


