20-IRQ-Nebenlaeufigkeit _en

O

System-Level Programming

20 Interrupts — Concurrency

Peter Wigemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

20-IRQ-Nebenlaeufigkeit _en

Concurrency

Definition: Concurrency

Two executions A and B of a program are considered to be
concurrent (A|B), if for every single instruction a of A and b of B it
is not determined, whether a or b is executed first (a, b or b, a).

m Concurrency is induced by

= Interrupts
~» IRQs can interrupt a program at an “arbitrary point”

= Real-parallel sequences (by the hardware)
~ other CPU / peripheral devices access the memory at “anytime”

= Quasi-parallel sequences (e. g., threads in an operating system)
~» OS can preempt tasks “anytime”

B Problem: Concurrent access to a shared state

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions

20-1

20-IRQ-Nebenlaeufigkeit _en

Problems with Concurrency

B Scenario
= a light gate at the entrance of a parking lot counts cars
m every 60 seconds, the value is transferred to security agency

static volatile uintl6_t cars; // photo sensor is connected
// to INT2
void main(void) {
while (1) { ISR(INT2_vect) {
waitsec(60); cars++;
send(cars); }
cars = 0;
¥

}

B Where does the problem occur?

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions

20-2

20-IRQ-Nebenlaeufigkeit _en

Problems with Concurrency

B Scenario
= a light gate at the entrance of a parking lot counts cars
m every 60 seconds, the value is transferred to security agency

static volatile uintl6_t cars; // photo sensor is connected
// to INT2
void main(void) {
while (1) { ISR(INT2_vect) {
waitsec(60); cars++;
send(cars); }
cars = 0;
}

}

Where does the problem occur?
= both main() as well as ISR read and write cars
~ potential lost-update anomaly

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions

20-2

20-IRQ-Nebenlaeufigkeit _en

O

Problems with Concurrency

Scenario
= a light gate at the entrance of a parking lot counts cars
m every 60 seconds, the value is transferred to security agency

static volatile uintlé_t cars; // photo sensor is connected
// to INT2
void main(void) {
while (1) { ISR(INT2_vect) {
waitsec(60); cars++;
send(cars); }
cars = 0;
}

}

Where does the problem occur?

= both main() as well as ISR read and write cars
~ potential lost-update anomaly

m size of the variable cars is larger than one register
~» potential read-write anomaly

© klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-2

PI’OblemS Wlth Concurrency (continued)

B Where are the problems here?

m |ost-update: both main() as well as ISR read and write cars
m read-write: size of the variable cars is larger than one register

B problem only becomes obvious when looking at the assembly level

void main(void) { // photosensor is connected
// to INT2
send(cars);
cars = 0; ISR(INT2_vect) {
e cars++;
} }
main: INT2_vect:
< e e ; save regs
lds r24,cars lds r24,cars ; load cars.lo
lds r25,cars+1 lds r25,cars+l ; load cars.hi
rcall send adiw r24,1 ; add (16 bit)
g sts cars+l,__zero_reg__ sts cars+1,r25 ; store cars.hi
2 sts cars,__zero_reg__ sts cars,r24 ; store cars.lo
g s e ; restore regs

20

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-3

Concurrency Problems: Lost-Update Anomaly

main: INT2_ vect:
S e ; save regs
lds r24,cars lds r24,cars
lds r25,cars+1 lds r25,cars+1
rcall send adiw r24,1
sts cars+l,__zero_reg__ sts cars+1,r25

sts cars,__zero_reg__ sts cars,r24
; restore regs

en

20-IRQ-Nebenlaeufigkeit

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-4

20-IRQ-Nebenlaeufigkeit _en

Concurrency Problems: Lost-Update Anomaly

main: INT2_ vect:
S e ; save regs
lds r24,cars lds r24,cars
1ds r25,cars+1 : lds r25,cars+1
rcall send ;é adiw r24,1
sts cars+l,__zero_reg__ sts cars+1,r25

sts cars,__zero_reg__ sts cars,r24

B Let cars=5 and let the IRQ (/) occur at this point

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions

; restore regs

20-4

20-IRQ-Nebenlaeufigkeit _en

Concurrency Problems: Lost-Update Anomaly

main: INT2_ vect:
e e ; save regs
lds r24,cars lds r24,cars
lds r25,cars+1 lds r25,cars+1
rcall send éé adiw r24,1
sts cars+l, zero_reg _ sts cars+1,r25

sts cars,__zero_reg__ sts cars,r24

B Let cars=5 and let the IRQ (/) occur at this point

= main already read the value of cars (5) from the register
(register — local variable)

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions

; restore regs

20-4

Concurrency Problems: Lost-Update Anomaly

main: INT2_vect:
200 - ; save regs
lds r24,cars lds r24,cars
lds r25,cars+1 : lds r25,cars+l
rcall send ;é adiw r24,1
sts cars+l,__zero_reg__ sts cars+l,r25
sts cars,__zero_reg__ sts cars,r24

; restore regs

B Let cars=5 and let the IRQ (/) occur at this point
= main already read the value of cars (5) from the register
(register — local variable)
= INT2_vect is executed

- registers are saved
- cars is incremented ~ cars=6
- registers are restored

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-4

Concurrency Problems: Lost-Update Anomaly

main: INT2_ vect:
S e ; save regs
lds r24,cars lds r24,cars
1ds r25,cars+1 : lds r25,cars+1
rcall send ;é adiw r24,1
sts cars+l,__zero_reg__ sts cars+1,r25
sts cars,__zero_reg__ sts cars,r24

; restore regs

B Let cars=5 and let the IRQ (/) occur at this point
= main already read the value of cars (5) from the register
(register — local variable)
= INT2_vect is executed

- registers are saved
- cars is incremented ~ cars=6
- registers are restored

m main passes the old value of cars (5) to send

20-IRQ-Nebenlaeu

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-4

Concurrency Problems: Lost-Update Anomaly

main: INT2_ vect:
; save regs
lds r24,cars lds r24,cars
1ds r25,cars+1 : lds r25,cars+1
rcall send é adiw r24,1
sts cars+l,__zero_reg— sts cars+1,r25

sts cars,__zero_reg__ sts cars,r24
; restore regs

B Let cars=5 and let the IRQ (/) occur at this point
= main already read the value of cars (5) from the register
(register — local variable)
= INT2_vect is executed

- registers are saved
- cars is incremented ~ cars=6
- registers are restored

m main passes the old value of cars (5) to send

m main sets cars to zero ~ 1 car is “lost”

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-4

Concurrency Problems: Read-Write Anomaly

main: INT2_vect:
S e ; save regs
lds r24,cars lds r24,cars
lds r25,cars+1 lds r25,cars+1
rcall send adiw r24,1
sts cars+l,__zero_reg__ sts cars+1,r25

sts cars,__zero_reg__ sts cars,r24
; restore regs

en

20-IRQ-Nebenlaeufigkeit

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-5

Concurrency Problems: Read-Write Anomaly

main: INT2_vect:
S e ; save regs
lds r24,cars lds r24,cars
1ds r25,cars+1 lds r25,cars+1
rcall send adiw r24,1
sts cars+l,__zero_reg — cé sts cars+1,r25
sts cars,__zero_reg__ sts cars,r24

; restore regs

m Let cars=255 and let the IRQ (%) occur at this point

20-IRQ-Nebenlaeufigkeit _en

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-5

Concurrency Problems: Read-Write Anomaly

main: INT2_vect:
S e ; save regs
lds r24,cars lds r24,cars
1ds r25,cars+1 lds r25,cars+1
rcall send adiw r24,1
sts cars+1,,,zero,reg,,(_é sts cars+1,r25
sts cars,__zero_reg__ sts cars,r24

; restore regs

m Let cars=255 and let the IRQ (%) occur at this point
m main has already transmitted cars=255 with send

20-IRQ-Nebenlaeufigkeit _en

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-5

20-IRQ-Nebenlaeufigkeit _en

Concurrency Problems: Read-Write Anomaly

main: INT2_ vect:
S e ; save regs
lds r24,cars lds r24,cars
1ds r25,cars+1 lds r25,cars+1
rcall send adiw r24,1
sts cars+1,_zero_reg_(_ é sts cars+1,r25
sts cars,_ _zero_reg _ sts cars,r24

; restore regs

m Let cars=255 and let the IRQ (%) occur at this point
m main has already transmitted cars=255 with send

m main has already set the high byte of cars to zero
~» cars=255, cars.lo=255, cars.hi=0

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-5

20-IRQ-Nebenlaeufigkeit _en

Concurrency Problems: Read-Write Anomaly

main: INT2_vect:
; save regs
lds r24,cars lds r24,cars
lds r25,cars+1 lds r25,cars+l
rcall send adiw r24,1
sts cars+l,__zero_reg (_é sts cars+l,r25
sts cars,__zero_reg__ sts cars,r24
; restore regs

m Let cars=255 and let the IRQ (%) occur at this point
m main has already transmitted cars=255 with send
m main has already set the high byte of cars to zero
~» cars=255, cars.lo=255, cars.hi=0

m INT2_vect is executed
~» cars is read and incremented, overflow in the high byte
~» cars=256, cars.lo=0, cars.hi=1

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-5

20-IRQ-Nebenlaeufigkeit _en

Concurrency Problems: Read-Write Anomaly

main: INT2_vect:
S e ; save regs
lds r24,cars lds r24,cars
1ds r25,cars+1 lds r25,cars+1
rcall send adiw r24,1
sts cars+l,__zero_reg — éé sts cars+1,r25
sts cars,__zero_reg—— sts cars,r24

; restore regs

m Let cars=255 and let the IRQ (%) occur at this point
m main has already transmitted cars=255 with send

m main has already set the high byte of cars to zero
~» cars=255, cars.lo=255, cars.hi=0

m INT2_vect is executed
~» cars is read and incremented, overflow in the high byte
~» cars=256, cars.lo=0, cars.hi=1

m main sets the low byte of cars to zero

~ cars=256, cars.lo=0, cars.hi=1
~> During the next send, main will transmit too many cars (255 cars)

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-5

20-IRQ-Nebenlaeufigkeit _en

Interrupt Locks: Avoid Data-Flow Anomalies

void main(void) {
while(1l) {
waitsec(60);

send(cars);
cars = 0;

B Where exactly is the critical region?

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions

20-6

Interrupt Locks: Avoid Data-Flow Anomalies

void main(void) {
while(1l) {
waitsec(60);

[send(cars);

cars = 0; critical region]

}
}

B Where exactly is the critical region?
m Reading of cars and setting it to zero have to be executed atomically

20-IRQ-Nebenlaeufigkeit _en

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-6

Interrupt Locks: Avoid Data-Flow Anomalies

void main(void) {
while(1l) {
waitsec(60);
cli();
send(cars);
cars = 0;
sei();

B Where exactly is the critical region?
m Reading of cars and setting it to zero have to be executed atomically

= This can be forced by using interrupt locks

- ISR interrupts main, never the other way round
~+ asymmetric synchronization (also unilateral synchronization)

20-IRQ-Nebenlaeufigkeit _en

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-6

20-IRQ-Nebenlaeufigkeit _en

Interrupt Locks: Avoid Data-Flow Anomalies

void main(void) {
while(1l) {
waitsec(60);
cli();
send(cars);
cars = 0;
sei();

B Where exactly is the critical region?
m Reading of cars and setting it to zero have to be executed atomically

= This can be forced by using interrupt locks

- ISR interrupts main, never the other way round
~+ asymmetric synchronization (also unilateral synchronization)

m Attention: keep regions with blocked interrupts as short as possible

- How long does the function send take?
- Can send be excluded from the critical region?

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-6

20-IRQ-Nebenlaeufigkeit _en

Problems with Concurrency (ontined)

m Scenario, part 2 (function waitsec())

m a light gate at the entrance of a parking lot should count cars
m every 60 seconds, the value is transferred to security agency

void waitsec(uint8_t sec) { static volatile int8_t event;
Tt // setup timer
sleep_enable(); // TIMER1 ISR
event = 0; // triggers when

while (! event) { // wait for event // waitsec() expires

sleep_cpu(); // until next irq
ISR(TIMER1 _COMPA_vect) {
sleep_disable();) event = 1;
}

B Where exactly does the problem occur?

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-7

20-IRQ-Nebenlaeufigkeit _en

Problems with Concurrency (ontined)

m Scenario, part 2 (function waitsec())

m a light gate at the entrance of a parking lot should count cars
m every 60 seconds, the value is transferred to security agency

void waitsec(uint8_t sec) { static volatile int8_t event;
Tt // setup timer
sleep_enable(); // TIMER1 ISR
event = 0; // triggers when
while (! event) { // wait for event // waitsec() expires
sleep_cpu(); // until next irq

ISR(TIMER1_COMPA_vect) {

sleep_disable(); event = 1;

} }

B Where exactly does the problem occur?

m Test, whether sth. is to be done, followed by
sleeping until there is sth. to do

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-7

20-IRQ-Nebenlaeufigkeit _en

Problems with Concurrency (ontined)

m Scenario, part 2 (function waitsec())

m a light gate at the entrance of a parking lot should count cars
m every 60 seconds, the value is transferred to security agency

void waitsec(uint8_t sec) { static volatile int8_t event;
Tt // setup timer
sleep_enable(); // TIMER1 ISR
event = 0; // triggers when

while (! event) { // wait for event // waitsec() expires

sleep_cpu(); // until next irq
ISR(TIMER1_COMPA_vect) {

}
sleep_disable(); event = 1;

} }

B Where exactly does the problem occur?

m Test, whether sth. is to be done, followed by
sleeping until there is sth. to do

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-7

20-IRQ-Nebenlaeufigkeit _en

Problems with Concurrency (ontined)

m Scenario, part 2 (function waitsec())

m a light gate at the entrance of a parking lot should count cars
m every 60 seconds, the value is transferred to security agency

void waitsec(uint8_t sec) { static volatile int8_t event;
Tt // setup timer
sleep_enable(); // TIMER1 ISR
event = 0; // triggers when
while (! event) { // wait for event // waitsec() expires
sleep_cpu(); // until next irq

ISR(TIMER1_COMPA_vect) {

sleep_disable(); event = 1;

} }

B Where exactly does the problem occur?
m Test, whether sth. is to be done, followed by
sleeping until there is sth. to do
~ Potential lost-wakeup anomaly

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-7

20-IRQ-Nebenlaeufigkeit _en

Concurrency Problems: Lost-Wakeup-Anomaly

void waitsec(uint8_t sec) { static volatile int8_t event;
// setup timer
sleep enable() // TIMER1 ISR
event = 0; // triggers when
: it .
while (! event)'{ // waitsec() expires
sleep_cpu();
ISR(TIMER1_COMPA vect) {
sleep_disable();] event = 1;
¥

®m Suppose, at this point a timer-IRQ (%) occurs

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-8

20-IRQ-Nebenlaeufigkeit _en

Concurrency Problems: Lost-Wakeup-Anomaly

void waitsec(uint8_t sec) { static volatile int8_t event;
// setup timer
sleep enable() // TIMER1 ISR
event = 0; // triggers when

// waitsec() expires

while (! event) {
sleep_cpu(); é
ISR(TIMER1_COMPA vect) {
sleep_disable();) event = 1;
}

®m Suppose, at this point a timer-IRQ (%) occurs
m waitsec already determined that event is not set

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-8

20-IRQ-Nebenlaeufigkeit _en

Concurrency Problems: Lost-Wakeup-Anomaly

void waitsec(uint8_t sec) { static volatile int8_t event;
// setup timer
sleep enable(); // TIMER1 ISR
event = 0; // triggers when
while (! event // waitsec() expires
sh(aep,cpu(;;{ é
} ISR(TIMER1_COMPA_vect) {
sleep_disable();) event = 1;

®m Suppose, at this point a timer-IRQ (%) occurs
m waitsec already determined that event is not set

m ISR is executed ~ event is set to 1

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-8

20-IRQ-Nebenlaeufigkeit _en

Concurrency Problems: Lost-Wakeup-Anomaly

void waitsec(uint8_t sec) {
// setup timer

sleep enable() // TIMER1 ISR
event = 0; // triggers when
while (! event).{ // waitsec() expires
sleep—_cpu();
ISR(TIMER1_COMPA vect) {
sleep_disable();) event = 1;
}

®m Suppose, at this point a timer-IRQ (%) occurs
m waitsec already determined that event is not set
m ISR is executed ~ event is set to 1

m Even though event is set to 1, the sleep state Is entered
~ If no further IRQ occurs, sleeping forever

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions

static volatile int8_t event;

20-8

L ost-Wakeup: Prevention of Deep Sleep

1 void waitsec(uint8_t sec) { static volatile int8_t event;
2 D00 // setup timer

3 sleep_enable(); // TIMER1 ISR

4 event = 0; // triggers when

5 // waitsec() expires

6 while (! event) {

- ISR(TIMER1_COMPA_vect) {
8 sleep_cpu(); event = 1;

9 }

10 }

11

12 sleep_disable();

13}

B Where exactly is the critical region located?

20-IRQ-Nebenlaeufigkeit _en

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-9

20-IRQ-Nebenlaeufigkeit _en

L ost-Wakeup: Prevention of Deep Sleep

1 void waitsec(uint8_t sec) {

2 D00 // setup timer

3 sleep_enable(); // TIMER1 ISR

4 event = 0; // triggers when

5 // waitsec() expires
6 while (! event) {

7 critical region ISR(TIMER1_COMPA vect) {
8 sleep_cpu(); event = 1;

9 }

10 }

11

12 sleep_disable();

13}

B Where exactly is the critical region located?

= evaluation of the condition and entry of the sleeping state
(Can this be solved by interrupt blocking?)

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions

static volatile int8_t event;

20-9

L ost-Wakeup: Prevention of Deep Sleep

1 void waitsec(uint8_t sec) { static volatile int8_t event;
2 D00 // setup timer

3 sleep_enable(); // TIMER1 ISR

4 event = 0; // triggers when

5 cli(); // waitsec() expires

6 while (! event) {

7 sei(); ISR(TIMER1_COMPA_vect) {
8 sleep_cpu(); event = 1;

9 cli(); }

10 }

11 sei();

12 sleep_disable();

13}

en

B Where exactly is the critical region located?

= evaluation of the condition and entry of the sleeping state
(Can this be solved by interrupt blocking?)

m problem: the IRQs have to be unblocked prior to sleep_cpu()!

20-IRQ-Nebenlaeufigk

O © klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-9

Lost-Wakeup: Prevention of Deep Sleep

1 void waitsec(uint8_t sec) { static volatile int8_t event;
2 D00 // setup timer

3 sleep_enable(); // TIMER1 ISR

4 event = 0; // triggers when

5 cli(); // waitsec() expires

6 while (! event) {

7 sei(); ISR(TIMER1_COMPA_vect) {
8 sleep_cpu(); event = 1;

9 cli(); }

10 }

11 sei();

12 sleep_disable();

13}

Where exactly is the critical region located?

= evaluation of the condition and entry of the sleeping state
(Can this be solved by interrupt blocking?)

m problem: the IRQs have to be unblocked prior to sleep_cpu()!

= works thanks to specific hardware support:
~» sequence sei, sleep is executed as an atomic instruction

© klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Race Conditions 20-9

20-IRQ-Nebenlaeufigkeit _en

O

Summary

Handling of interrupts is asynchronous to the program flow
m unexpected ~ current state has to be saved in the interrupt handler

= source of concurrency ~» synchronization required

Measures for synchronization
= shared variables shall (always) be declared as volatile

m blocking arrival of interrupts: cli, sei (when working with non-atomic
accesses that translate to more than one machine instruction)

m Locking for longer times leads to the loss of IRQs!

Concurrency induced by interrupts is enormous source for errors
m Jost-update and lost-wakeup problems

m indeterministic ~ cannot efficiently be tested for

Important for complexity management: modularization <

= Interrupt handler and functions accessing a shared state (static
variables!) should be encapsulated in their own module

© klsw System-Level Programming (ST 25) 20 Interrupts — Concurency — Summary 20-10

	20 Interrupts – Concurency
	Race Conditions
	Summary

