
System-Level Programming

20 Interrupts – Concurrency

Peter Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

http://sys.cs.fau.de/lehre/ss25

Concurrency

Definition: Concurrency
Two executions A and B of a program are considered to be
concurrent (A|B), if for every single instruction a of A and b of B it
is not determined, whether a or b is executed first (a, b or b, a).

Concurrency is induced by
Interrupts
; IRQs can interrupt a program at an “arbitrary point”

Real-parallel sequences (by the hardware)
; other CPU / peripheral devices access the memory at “anytime”

Quasi-parallel sequences (e. g., threads in an operating system)
; OS can preempt tasks “anytime”

Problem: Concurrent access to a shared state

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–1

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Problems with Concurrency

Scenario
a light gate at the entrance of a parking lot counts cars
every 60 seconds, the value is transferred to security agency

static volatile uint16_t cars;

void main(void) {
while (1) {
waitsec(60);
send(cars);
cars = 0;

}
}

// photo sensor is connected
// to INT2

ISR(INT2_vect) {
cars++;

}

Where does the problem occur?

both main() as well as ISR read and write cars
; potential lost-update anomaly
size of the variable cars is larger than one register
; potential read-write anomaly

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–2

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Problems with Concurrency

Scenario
a light gate at the entrance of a parking lot counts cars
every 60 seconds, the value is transferred to security agency

static volatile uint16_t cars;

void main(void) {
while (1) {
waitsec(60);
send(cars);
cars = 0;

}
}

// photo sensor is connected
// to INT2

ISR(INT2_vect) {
cars++;

}

Where does the problem occur?
both main() as well as ISR read and write cars
; potential lost-update anomaly

size of the variable cars is larger than one register
; potential read-write anomaly

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–2

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Problems with Concurrency

Scenario
a light gate at the entrance of a parking lot counts cars
every 60 seconds, the value is transferred to security agency

static volatile uint16_t cars;

void main(void) {
while (1) {
waitsec(60);
send(cars);
cars = 0;

}
}

// photo sensor is connected
// to INT2

ISR(INT2_vect) {
cars++;

}

Where does the problem occur?
both main() as well as ISR read and write cars
; potential lost-update anomaly
size of the variable cars is larger than one register
; potential read-write anomaly

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–2

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Problems with Concurrency (continued)

Where are the problems here?
lost-update: both main() as well as ISR read and write cars
read-write: size of the variable cars is larger than one register

problem only becomes obvious when looking at the assembly level
void main(void) {

· · ·
send(cars);
cars = 0;

· · ·
}

// photosensor is connected
// to INT2

ISR(INT2_vect) {
cars++;

}

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars ; load cars.lo
lds r25,cars+1 ; load cars.hi
adiw r24,1 ; add (16 bit)
sts cars+1,r25 ; store cars.hi
sts cars,r24 ; store cars.lo
· · · ; restore regs

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–3

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Lost-Update Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=5 and let the IRQ () occur at this point

main already read the value of cars (5) from the register
(register 7→ local variable)

INT2_vect is executed
registers are saved
cars is incremented ; cars=6
registers are restored

main passes the old value of cars (5) to send

main sets cars to zero ; 1 car is “lost”

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–4

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Lost-Update Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=5 and let the IRQ () occur at this point

main already read the value of cars (5) from the register
(register 7→ local variable)

INT2_vect is executed
registers are saved
cars is incremented ; cars=6
registers are restored

main passes the old value of cars (5) to send

main sets cars to zero ; 1 car is “lost”

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–4

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Lost-Update Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=5 and let the IRQ () occur at this point

main already read the value of cars (5) from the register
(register 7→ local variable)

INT2_vect is executed
registers are saved
cars is incremented ; cars=6
registers are restored

main passes the old value of cars (5) to send

main sets cars to zero ; 1 car is “lost”

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–4

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Lost-Update Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=5 and let the IRQ () occur at this point

main already read the value of cars (5) from the register
(register 7→ local variable)

INT2_vect is executed
registers are saved
cars is incremented ; cars=6
registers are restored

main passes the old value of cars (5) to send

main sets cars to zero ; 1 car is “lost”

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–4

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Lost-Update Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=5 and let the IRQ () occur at this point

main already read the value of cars (5) from the register
(register 7→ local variable)

INT2_vect is executed
registers are saved
cars is incremented ; cars=6
registers are restored

main passes the old value of cars (5) to send

main sets cars to zero ; 1 car is “lost”

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–4

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Lost-Update Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=5 and let the IRQ () occur at this point

main already read the value of cars (5) from the register
(register 7→ local variable)

INT2_vect is executed
registers are saved
cars is incremented ; cars=6
registers are restored

main passes the old value of cars (5) to send

main sets cars to zero ; 1 car is “lost”

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–4

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Read-Write Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=255 and let the IRQ () occur at this point

main has already transmitted cars=255 with send

main has already set the high byte of cars to zero
; cars=255, cars.lo=255, cars.hi=0

INT2_vect is executed
; cars is read and incremented, overflow in the high byte
; cars=256, cars.lo=0, cars.hi=1

main sets the low byte of cars to zero
; cars=256, cars.lo=0, cars.hi=1
; During the next send, main will transmit too many cars (255 cars)

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–5

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Read-Write Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=255 and let the IRQ () occur at this point

main has already transmitted cars=255 with send

main has already set the high byte of cars to zero
; cars=255, cars.lo=255, cars.hi=0

INT2_vect is executed
; cars is read and incremented, overflow in the high byte
; cars=256, cars.lo=0, cars.hi=1

main sets the low byte of cars to zero
; cars=256, cars.lo=0, cars.hi=1
; During the next send, main will transmit too many cars (255 cars)

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–5

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Read-Write Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=255 and let the IRQ () occur at this point

main has already transmitted cars=255 with send

main has already set the high byte of cars to zero
; cars=255, cars.lo=255, cars.hi=0

INT2_vect is executed
; cars is read and incremented, overflow in the high byte
; cars=256, cars.lo=0, cars.hi=1

main sets the low byte of cars to zero
; cars=256, cars.lo=0, cars.hi=1
; During the next send, main will transmit too many cars (255 cars)

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–5

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Read-Write Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=255 and let the IRQ () occur at this point

main has already transmitted cars=255 with send

main has already set the high byte of cars to zero
; cars=255, cars.lo=255, cars.hi=0

INT2_vect is executed
; cars is read and incremented, overflow in the high byte
; cars=256, cars.lo=0, cars.hi=1

main sets the low byte of cars to zero
; cars=256, cars.lo=0, cars.hi=1
; During the next send, main will transmit too many cars (255 cars)

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–5

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Read-Write Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=255 and let the IRQ () occur at this point

main has already transmitted cars=255 with send

main has already set the high byte of cars to zero
; cars=255, cars.lo=255, cars.hi=0

INT2_vect is executed
; cars is read and incremented, overflow in the high byte
; cars=256, cars.lo=0, cars.hi=1

main sets the low byte of cars to zero
; cars=256, cars.lo=0, cars.hi=1
; During the next send, main will transmit too many cars (255 cars)

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–5

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Read-Write Anomaly

main:
· · ·
lds r24,cars
lds r25,cars+1
rcall send
sts cars+1,__zero_reg__
sts cars,__zero_reg__
· · ·

INT2_vect:
· · · ; save regs
lds r24,cars
lds r25,cars+1
adiw r24,1
sts cars+1,r25
sts cars,r24
· · · ; restore regs

Let cars=255 and let the IRQ () occur at this point

main has already transmitted cars=255 with send

main has already set the high byte of cars to zero
; cars=255, cars.lo=255, cars.hi=0

INT2_vect is executed
; cars is read and incremented, overflow in the high byte
; cars=256, cars.lo=0, cars.hi=1

main sets the low byte of cars to zero
; cars=256, cars.lo=0, cars.hi=1
; During the next send, main will transmit too many cars (255 cars)

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–5

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Interrupt Locks: Avoid Data-Flow Anomalies

void main(void) {
while(1) {
waitsec(60);
cli();
send(cars);
cars = 0;
sei();

}
}

Where exactly is the critical region?

Reading of cars and setting it to zero have to be executed atomically

This can be forced by using interrupt locks
ISR interrupts main, never the other way round
; asymmetric synchronization (also unilateral synchronization)

Attention: keep regions with blocked interrupts as short as possible
How long does the function send take?
Can send be excluded from the critical region?

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–6

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Interrupt Locks: Avoid Data-Flow Anomalies

void main(void) {
while(1) {
waitsec(60);
cli();
send(cars);
cars = 0;
sei();

}
}

critical region

Where exactly is the critical region?
Reading of cars and setting it to zero have to be executed atomically

This can be forced by using interrupt locks
ISR interrupts main, never the other way round
; asymmetric synchronization (also unilateral synchronization)

Attention: keep regions with blocked interrupts as short as possible
How long does the function send take?
Can send be excluded from the critical region?

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–6

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Interrupt Locks: Avoid Data-Flow Anomalies

void main(void) {
while(1) {
waitsec(60);
cli();
send(cars);
cars = 0;
sei();

}
}

critical region

Where exactly is the critical region?
Reading of cars and setting it to zero have to be executed atomically

This can be forced by using interrupt locks
ISR interrupts main, never the other way round
; asymmetric synchronization (also unilateral synchronization)

Attention: keep regions with blocked interrupts as short as possible
How long does the function send take?
Can send be excluded from the critical region?

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–6

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Interrupt Locks: Avoid Data-Flow Anomalies

void main(void) {
while(1) {
waitsec(60);
cli();
send(cars);
cars = 0;
sei();

}
}

critical region

Where exactly is the critical region?
Reading of cars and setting it to zero have to be executed atomically

This can be forced by using interrupt locks
ISR interrupts main, never the other way round
; asymmetric synchronization (also unilateral synchronization)

Attention: keep regions with blocked interrupts as short as possible
How long does the function send take?
Can send be excluded from the critical region?

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–6

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Problems with Concurrency (continued)

Scenario, part 2 (function waitsec())
a light gate at the entrance of a parking lot should count cars
every 60 seconds, the value is transferred to security agency

void waitsec(uint8_t sec) {
· · · // setup timer
sleep_enable();
event = 0;
while (! event) { // wait for event
sleep_cpu(); // until next irq

}
sleep_disable();

}

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

Where exactly does the problem occur?

Test, whether sth. is to be done, followed by
sleeping until there is sth. to do
; Potential lost-wakeup anomaly

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–7

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Problems with Concurrency (continued)

Scenario, part 2 (function waitsec())
a light gate at the entrance of a parking lot should count cars
every 60 seconds, the value is transferred to security agency

void waitsec(uint8_t sec) {
· · · // setup timer
sleep_enable();
event = 0;
while (! event) { // wait for event
sleep_cpu(); // until next irq

}
sleep_disable();

}

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

Where exactly does the problem occur?
Test, whether sth. is to be done, followed by
sleeping until there is sth. to do

; Potential lost-wakeup anomaly

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–7

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Problems with Concurrency (continued)

Scenario, part 2 (function waitsec())
a light gate at the entrance of a parking lot should count cars
every 60 seconds, the value is transferred to security agency

void waitsec(uint8_t sec) {
· · · // setup timer
sleep_enable();
event = 0;
while (! event) { // wait for event
sleep_cpu(); // until next irq

}
sleep_disable();

}

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

Where exactly does the problem occur?
Test, whether sth. is to be done, followed by
sleeping until there is sth. to do

; Potential lost-wakeup anomaly

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–7

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Problems with Concurrency (continued)

Scenario, part 2 (function waitsec())
a light gate at the entrance of a parking lot should count cars
every 60 seconds, the value is transferred to security agency

void waitsec(uint8_t sec) {
· · · // setup timer
sleep_enable();
event = 0;
while (! event) { // wait for event
sleep_cpu(); // until next irq

}
sleep_disable();

}

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

Where exactly does the problem occur?
Test, whether sth. is to be done, followed by
sleeping until there is sth. to do
; Potential lost-wakeup anomaly

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–7

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Lost-Wakeup -Anomaly

void waitsec(uint8_t sec) {
· · · // setup timer
sleep_enable();
event = 0;
while (! event) {

sleep_cpu();
}
sleep_disable();

}

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

Suppose, at this point a timer-IRQ () occurs

waitsec already determined that event is not set

ISR is executed ; event is set to 1
Even though event is set to 1, the sleep state is entered
; If no further IRQ occurs, sleeping forever

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–8

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Lost-Wakeup -Anomaly

void waitsec(uint8_t sec) {
· · · // setup timer
sleep_enable();
event = 0;
while (! event) {

sleep_cpu();
}
sleep_disable();

}

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

Suppose, at this point a timer-IRQ () occurs

waitsec already determined that event is not set

ISR is executed ; event is set to 1
Even though event is set to 1, the sleep state is entered
; If no further IRQ occurs, sleeping forever

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–8

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Lost-Wakeup -Anomaly

void waitsec(uint8_t sec) {
· · · // setup timer
sleep_enable();
event = 0;
while (! event) {

sleep_cpu();
}
sleep_disable();

}

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

Suppose, at this point a timer-IRQ () occurs

waitsec already determined that event is not set

ISR is executed ; event is set to 1

Even though event is set to 1, the sleep state is entered
; If no further IRQ occurs, sleeping forever

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–8

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Concurrency Problems: Lost-Wakeup -Anomaly

void waitsec(uint8_t sec) {
· · · // setup timer
sleep_enable();
event = 0;
while (! event) {

sleep_cpu();
}
sleep_disable();

}

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

Suppose, at this point a timer-IRQ () occurs

waitsec already determined that event is not set

ISR is executed ; event is set to 1
Even though event is set to 1, the sleep state is entered
; If no further IRQ occurs, sleeping forever

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–8

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Lost-Wakeup: Prevention of Deep Sleep

1 void waitsec(uint8_t sec) {
2 · · · // setup timer
3 sleep_enable();
4 event = 0;
5 cli();
6 while (! event) {
7 sei();
8 sleep_cpu();
9 cli();

10 }
11 sei();
12 sleep_disable();
13 }

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

Where exactly is the critical region located?

evaluation of the condition and entry of the sleeping state
(Can this be solved by interrupt blocking?)

problem: the IRQs have to be unblocked prior to sleep_cpu()!

works thanks to specific hardware support:
; sequence sei, sleep is executed as an atomic instruction

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–9

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Lost-Wakeup: Prevention of Deep Sleep

1 void waitsec(uint8_t sec) {
2 · · · // setup timer
3 sleep_enable();
4 event = 0;
5 cli();
6 while (! event) {
7 sei();
8 sleep_cpu();
9 cli();

10 }
11 sei();
12 sleep_disable();
13 }

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

critical region

Where exactly is the critical region located?
evaluation of the condition and entry of the sleeping state
(Can this be solved by interrupt blocking?)

problem: the IRQs have to be unblocked prior to sleep_cpu()!

works thanks to specific hardware support:
; sequence sei, sleep is executed as an atomic instruction

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–9

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Lost-Wakeup: Prevention of Deep Sleep

1 void waitsec(uint8_t sec) {
2 · · · // setup timer
3 sleep_enable();
4 event = 0;
5 cli();
6 while (! event) {
7 sei();
8 sleep_cpu();
9 cli();

10 }
11 sei();
12 sleep_disable();
13 }

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

critical region

Where exactly is the critical region located?
evaluation of the condition and entry of the sleeping state
(Can this be solved by interrupt blocking?)

problem: the IRQs have to be unblocked prior to sleep_cpu()!

works thanks to specific hardware support:
; sequence sei, sleep is executed as an atomic instruction

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–9

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Lost-Wakeup: Prevention of Deep Sleep

1 void waitsec(uint8_t sec) {
2 · · · // setup timer
3 sleep_enable();
4 event = 0;
5 cli();
6 while (! event) {
7 sei();
8 sleep_cpu();
9 cli();

10 }
11 sei();
12 sleep_disable();
13 }

static volatile int8_t event;

// TIMER1 ISR
// triggers when
// waitsec() expires

ISR(TIMER1_COMPA_vect) {
event = 1;

}

critical region

Where exactly is the critical region located?
evaluation of the condition and entry of the sleeping state
(Can this be solved by interrupt blocking?)

problem: the IRQs have to be unblocked prior to sleep_cpu()!

works thanks to specific hardware support:
; sequence sei, sleep is executed as an atomic instruction

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Race Conditions 20–9

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

Summary

Handling of interrupts is asynchronous to the program flow
unexpected ; current state has to be saved in the interrupt handler

source of concurrency ; synchronization required

Measures for synchronization
shared variables shall (always) be declared as volatile

blocking arrival of interrupts: cli, sei (when working with non-atomic
accesses that translate to more than one machine instruction)

Locking for longer times leads to the loss of IRQs!

Concurrency induced by interrupts is enormous source for errors
lost-update and lost-wakeup problems

indeterministic ; cannot efficiently be tested for

Important for complexity management: modularization ↪→ 12–7

Interrupt handler and functions accessing a shared state (static
variables!) should be encapsulated in their own module

© klsw System-Level Programming (ST 25) 20 Interrupts – Concurency – Summary 20–10

20
-I
R

Q
-N

eb
en

la
eu

fig
ke

it
_

en

	20 Interrupts – Concurency
	Race Conditions
	Summary

