18-IRQ-Konzept _en

O

System-Level Programming

18 Interrupts

Peter Wigemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

18-IRQ-Konzept _en

Interrupt Handling

®m An interrupt (4) occurs when a peripheral device signals <

m a level change at a port pin low to high
m the expiration of a timer
= the completion of an A/D conversion (new value available)

m How is the program notified about the (concurrent) event?

m Two alternative procedures

= Polling: The program regularly checks a state and calls a
handler function if necessary.

= Interrupt: Device “notifies” the processor; subsequently, the
processor branches into a handler function.

O © klsw System-Level Programming (ST 25) 18 Interrupts — Interrupts: Introduction 18-1

Interrupt — Function Call “from Outside”

H 2
é (e.g., change of level at pin)

c
5]
o
=Y
o
N
<
S
x
(e
o
&
—

- © klsw System-Level Programming (ST 25) 18 Interrupts — Interrupts: Introduction

Interrupt — Function Call “from Outside”

t] ta 5
é (e.g., change of level at pin) é (e.g., Timer expired)

c
5]
o
=Y
o
N
<
S
x
(e
o
&
—

- © klsw System-Level Programming (ST 25) 18 Interrupts — Interrupts: Introduction

Interrupt — Function Call “from Outside”

t] ta 5
é (e.g., change of level at pin) é (e.g., Timer expired)

c
5]
o
=Y
o
N
<
S
x
(e
o
&
—

- © klsw System-Level Programming (ST 25) 18 Interrupts — Interrupts: Introduction

18-IRQ-Konzept _en

Polling vs. Interrupts — (Dis-)Advantages

m Polling (— "polling-based system")

m Processing of events synchronously to the program flow

— Detection of events scattered everywhere (missing separation of concerns)
Wasting processing resources (if usable for other things)
— High polling frequency ~ high processor load ~ high energy consumption

+ Implicit consistency in data by sequential program flow
+ Program behaviour predictable
® Interrupts (~ “event-triggered system")

m Processing of events asynchronous to the program flow
+ Event handlers can be easily separated in the source code
+ Processor is only triggered when an event occurs
— Higher complexity by concurrency ~ synchronisation required
— Program behavior unpredictable

O © klsw System-Level Programming (ST 25) 18 Interrupts — Interrupts: Introduction 18-3

18-IRQ-Konzept _en

Polling vs. Interrupts — (Dis-)Advantages

m Polling (— "polling-based system")

m Processing of events synchronously to the program flow

— Detection of events scattered everywhere (missing separation of concerns)
Wasting processing resources (if usable for other things)
— High polling frequency ~ high processor load ~ high energy consumption

+ Implicit consistency in data by sequential program flow
+ Program behaviour predictable
® Interrupts (~ “event-triggered system")

m Processing of events asynchronous to the program flow
+ Event handlers can be easily separated in the source code
+ Processor is only triggered when an event occurs
— Higher complexity by concurrency ~ synchronisation required
— Program behavior unpredictable

Both methods provide specific (dis-)advantages
~ Which one to choose depends on concrete scenario

O © klsw System-Level Programming (ST 25) 18 Interrupts — Interrupts: Introduction 18-3

Interrupt — Unpredictable Call “from Outside’

t] ta 5
é (e.g., change of level at pin) é (e.g., Timer expired)

c
5]
o
=Y
o
N
<
S
x
(e
o
&
—

- © klsw System-Level Programming (ST 25) 18 Interrupts — Interrupts: Introduction

18-IRQ-Konzept _en

Disabling Interrupts

m Notification about new interrupts can be disabled by software
m Used for synchronisation with ISRs
= Single ISR: Bit in device-specific control register
= All ISRs: Bit (IE, Interrupt Enable) in a status register of CPU

B Pending IRQs are (usually) buffered IRQ > Interrupt
= At most one interrupt (per source)! ReQuest

= During longer disabled time spans, IRQs can be missed!

B The IE bit is affected by:

m processor instructions: cli: IE<0 (clear interrupt, IRQs disabled)
sei: IE<1 (set interrupt, IRQs enabled)

m after a RESET: IE=0 ~ IRQs are always disabled at the begin
of the main program

m when entering an ISR: IE=0 ~» IRQs are disabled during handling of
other interrupts

O © klsw System-Level Programming (ST 25) 18 Interrupts — Controlling Interrupts 18-5

18-IRQ-Konzept _en

Interrupt Blocking: Example

IE =1

sei() cli()

N \N\N\NN

main()

isr()

IE =0

é (z. B. Timer expired)

t1 At the begin of main(), all IRQs are disabled (IE=0)
to, tz3 With sei() / cli() IRQs can be enabled (IE=1) / disabled
ts 4 but IE=0 ~ handling is blocked, IRQ is buffered
ts main() unblocks IRQs (IE=1) ~ buffered IRQ is executed
ts—ts During handling of the ISR, all IRQs are blocked again (IE=0)
te Interrupted main() is resumed

O © klsw System-Level Programming (ST 25)

18 Interrupts — Controlling Interrupts

18-6

18-IRQ-Konzept _en

Interrupt Blocking: Example

IE =1

sei() cli() sei()

N \N\N\NN

main()

isr()

IE =0

A AVAVAVAVAVAV VAV VAV eV Vo Ve,

L*@E%ﬁ e

é (z. B. Timer expired)

t1 At the begin of main(), all IRQs are disabled (IE=0)
to, tz3 With sei() / cli() IRQs can be enabled (IE=1) / disabled
ts 4 but IE=0 ~ handling is blocked, IRQ is buffered
ts main() unblocks IRQs (IE=1) ~ buffered IRQ is executed
ts—ts During handling of the ISR, all IRQs are blocked again (IE=0)
te Interrupted main() is resumed

O © klsw System-Level Programming (ST 25)

18 Interrupts — Controlling Interrupts

18-6

18-IRQ-Konzept _en

Procedure of an Interrupt — Overview

@ Device signals an interrupt

- Current program is “immediately” interrupted (prior to the
next machine instruction, with IE=1) @

® Notification of further interrupts is blocked (IE=0)

- Interrupts that occur during this time are buffered (at most
once per sourcel)

(G)

® Content of registers is stored (e.g., on the stack)
- PC and status registers automatically by the hardware
- Multi-purpose registers usually manually in the ISR
® Determination of to be called ISR (interrupt handler)
® ISR is executed

O ISR terminates with “return from interrupt” instruction
- Content of registers is restored

- Notification of interrupts again unblocked/enabled (IE=1)
- Program is resumed

®
® Interrupt-Handler

O © klsw System-Level Programming (ST 25) 18 Interrupts — Controlling Interrupts 18-7

18-IRQ-Konzept _en

Procedure of an Interrupt — Details [<< J »>)

RESET
——»| PC =0x0000

Zero bit ——
Program memory

IRQs enabled bit

SR z IE—_| main: Idi R1, 48 | 0x0000
. 0T 17 dec R1 0x0002 o true
' - beq L1 0x0004
call f 0x0006
sub R1, 58 | 0x0008
E—- 0x000A false
\
add R1, 11 | 0x0100 %
Idi R1,1 0x0200
dec R1 0x0202
stsa, R1 | 0x0204
iret 0x0206 decode(w)

I

IRQ pending bit
m Here as an extension of the simplified
pseUdO processor — w: call <func> w: ret w: icall w: iret
= Only one source for interrupts "6 = func S P "6 re

m All registers are saved

O by the hardware
© klsw System-Level Programming (ST 25) 18 Interrupts — Controlling Interrupts 18-8

Procedure of an Interrupt — Details [<< J »>)

RESET
—>»| PC =0x0000

IRQs enabled bit

Zero bit
Program memory

SR z IE—_| main: Idi R1, 48 | 0x0000

dec R1 0x0002

beq L1 0x0004

call f 0x0006

sub R1, 58 [0x0008

0x000A v

add R1, 11 | 0x0100 | W = *PC++ w = icall |

ret 0x0102

Idi R1,1 0x0200

dec R1 0x0202 ?
sts a, R1 0x0204
iret 0x0206 decode(w)

© Device signals an interrupt (current instruction will be finalised)

5

N

2

9 .

s w: call <func> w: ret w: icall

N PC'=PC PC=PC’ SR =SR

<] PC = func SR.E =0

& P =0

> PC' =PC

= PC =isr
R =R1

O

© klsw System-Level Programming (ST 25) 18 Interrupts — Controlling Interrupts 18-8

Procedure of an Interrupt — Details [<< J »>)

RESET
—>»| PC =0x0000

IRQs enabled bit
Zero bit ——
Program memory
SR z IE—_| main: Idi R1, 48 | 0x0000
F dec R1 0x0002 o true
beq L1 0x0004
call f 0x0006
sub R1, 58 | 0x0008
0x000A false
\
add R1, 11 | 0x0100 _
Idi R1,1 0x0200
dec R1 0x0202
sts a, R1 0x0204
iret 0x0206 decode(w)
(Before the next instruction fetch the interrupt state is checked) execute(w)
s
|
g
% w: call <func> w: ret w: icall
X PC =PC PC=PC SR" =SR
& PC = func SRIE =0
x
&

O

© klsw System-Level Programming (ST 25) 18 Interrupts — Controlling Interrupts 18-8

Procedure of an Interrupt — Details [<< J »>)

RESET
—>»| PC =0x0000

IRQs enabled bit
Zero bit ——
Program memory
SR z IE—_| o main: Idi R1, 48 | 0x0000
. 0707 dec R1 0x0002 o true
. - beq L1 0x0004
call f 0x0006
sub R1, 58 | 0x0008
0x000A false
\
add R1, 11 | 0x0100 _
Idi R1,1 0x0200
dec R1 0x0202
sts a, R1 0x0204
iret 0x0206 decode(w)
@ The delivery of further interrupts is stalled execute(w)
s © Register contents get saved
|
g
% w: call <func> w: ret w: icall
X PC =PC PC=PC SR" =SR
& PC = func SRIE =0
«
&

O

© klsw System-Level Programming (ST 25) 18 Interrupts — Controlling Interrupts 18-8

Procedure of an Interrupt — Details [<< J »>)

RESET
—>»| PC =0x0000

IRQs enabled bit
Zero bit ——
Program memory
SR z IE—_| main: Idi R1, 48 | 0x0000
F dec R1 0x0002 o true
beq L1 0x0004
call f 0x0006
sub R1, 58 | 0x0008
0x000A false
\
add R1, 11 | 0x0100 _x
Idi R1,1 0x0200
dec R1 0x0202
stsa, R1 | 0x0204
iret 0x0206 decode(w)
O ISR to be called is determined execute(w)
s
|
.
15
% w: call <func> w: ret w: icall
X PC =PC PC=PC SR" =SR
& PC = func SRIE =0
«
o
=

O

© klsw System-Level Programming (ST 25) 18 Interrupts — Controlling Interrupts 18-8

Procedure of an Interrupt — Details [<< J »>)

RESET
—>»| PC =0x0000

IRQs enabled bit

Zero bit
Program memory

R z IE—_| main: Idi R1, 48 | 0x0000
v (N3

dec R1 0x0002

beq L1 0x0004

call f 0x0006

sub R1, 58 [0x0008

0x000A v

add R1, 11 | 0x0100 | W = *PC++ w = icall |

ret 0x0102

Idi R1,1 0x0200

dec R1 0x0202 ?
sts a, R1 0x0204
iret 0x0206 decode(w)

O ISR gets executed

5

N

2

9 .

s w: call <func> w: ret w: icall

N PC'=PC PC=PC’ SR =SR

<] PC = func SR.E =0

& P =0

> PC' =PC

= PC =isr
R =R1

O

© klsw System-Level Programming (ST 25) 18 Interrupts — Controlling Interrupts 18-8

18-IRQ-Konzept _en

O

Procedure of an Interrupt — Details

RESET
—>»| PC =0x0000

IRQs enabled bit
Zero bit
Program memory
zZ |1 —_l Py main: Idi R1, 48 | 0x0000
F dec R1 0x0002
beq L1 0x0004
call f 0x0006
sub R1, 58 | 0x0008
0x000A A
add R1, 11 | 0x0100 | _
ot 00102 W= :C++ w =icall
Idi R1,1 0x0200 ¢
dec R1 0x0202
stsa, R1 [0x0204
iret 0x0206 decode(w)
@ ISR terminates with iret-instruction
- Register contents are restored
- Delivery of interrupts is reactivated
- Program is resumed .
w: call <func> w: ret w: icall
PC =PC PC=PC SR =SR
PC =func SR.E =0 PC = PC
P =0
PC =PC
PC =isr
R1" =R1

© klsw

System-Level Programming (ST 25)

18 Interrupts

— Controlling Interrupts

18-8

	18 Interrupts
	Interrupts: Introduction
	Controlling Interrupts

