17-MC-Peripherie _en

O

System-Level Programming

17 pC System Architecture — Peripherals

Peter Wiagemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

What is a pController?

m pController := processor + memory + peripherals

= in fact, computer system on one chip — System-on-a-Chip (SoC)
= often usable without additional external components, like e. g.,
timers and memory ~ cost-efficient system design

® main features are (plentiful) integrated input/output
components (peripherals)

B distinctions are not fixed: processor +— uC +— SoC

m AMD64 CPUs also have included timers, memory (cache), ...
m some UC execute at speeds close to “large processors”

17-MC-Periph

O © klsw System-Level Programming (ST 25) 17 pC-System Architecture — Peripherals — Overview 17-1

17-MC-Peripherie _en

Example ATmega32: Block Circuit Diagram

vee

e e A

Peo-pC7

e O o

AReF

mani

1]

PORTA DRIVERS/BUFFERS.

[rowcomemsmerens |

1

1

PORTA DIGITAL INTERFACE

[rommooim mrenece

I

-

MUX & Anc
'ADC INTERFAGE

CPU core

1WL4

d

PROGRAM
COUNTER
+

s/

L T
COUNTERS

osaiLLAToR

o
e

INTERNAL
OSCILLATOR

Memory

GENERAL
PURPOSE
REGISTERS.

CONTROL.
LINES

sl

WATCHDOG.
TIMER

OSCILLATOR

INTERRUPT
uniT

EeprOM

e usaaT

\

I v

pommsvam et |

pommo v esrice |

1

1

[rowmomenseurens |

rormoomversauerens |

111

IERRANAI

Peripherals

xtaLy

P
|

xTaz

===

THTTTT

PBO- Pa7

T

Fp0-PO7

17-MC-Peripherie _en

Peripheral Devices

B peripheral device: hardware component that is located “outside”
of the central unit of a computer
m traditional (laptop): keyboard, monitor, ...
(+ physically “outside”)

m in general: hardware functions that are not directly map-
ped into the processor's instruction set
(+ logically “outside”)

B peripheral components are addressed via |/O registers

m control registers: instructions to control/query state of peri-
pheral is encoded by bit patterns (e.g., DDRD
for ATmega)

m data registers: required for exchange of data
(e.g., PORTD, PIND for ATmega)

m registers are often only available as read-only or write-only

O &gklgw System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
7-3

Peripheral Devices: Examples

B typical peripheral devices of pControllers

[] timer/counter counting registers that are incremented with a defined fre-
quency (timer) or by external signals (counter) and that
trigger an interrupt at a configurable counting value.

] Watchdog timer timer that has to be written to regularly otherwise a RE-
SET is triggered (“dead man’s button”).
= (a)synchronous component for serial (bit-wise) exchange of data with a
serial interface synchronous (e.g., RS-232) or asynchronous (e.g., 12C)
protocol.
m A/D converter component for one-time/continuous discretization of vol-
tage values (e.g., 0-5V — 10-bit integer).
. s PWM generators component for generating pulse-width—-modulated signals,
B pseudo-analog (D/A) output.
s m ports groups of usually 8 ports which can be set to GND or Vcc
; and whose states can be monitored. —
= m bus systems SPI, RS-232, CAN, Ethernet, MLI, 12C, ...

O %c) KIswW System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
-4

Peripheral Devices — Registers

m different architectures for accessing 1/O registers
= memory-mapped: Registers are integrated into address space; ac-

(most uC) cess with memory instructions of the processor
(load, store)
m port-based: Registers are organized in a separate |/O ad-

(x86-based laptops) dress space; access with special in- and out-
instructions

a
o

ol

O %c) KIsW System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
7-5

17-MC-Peripherie _en

Peripheral Devices — Registers

m different architectures for accessing 1/O registers

= memory-mapped:
(most pC)

m port-based:
(x86-based laptops)

addresses of the registers are

Registers are integrated into address space; ac-
cess with memory instructions of the processor
(load, store)

Registers are organized in a separate |/O ad-
dress space; access with special in- and out-
instructions

listed in the hardware's documentation

Address Name Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Page
$3F ($5F) SREG 1 T H S \ N r4 [} 8
$3E ($5E) SPH = = = = P11 P10 sPo sP8 1
$3D ($5D) SPL sP7 SP6 sPs SP4 sP3 sP2 sP1 = 11
$3C ($5C) OCRO Timer/Counter0 Output Compare Register 86
$12 ($32) PORTD)| PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTDO 67

BORD pop7 | Dops | oops | Dppbp4 | popbs | pobz | bbbt | DDDO 67
$10 ($30) PIND PIND7 | PIND6 | PIND5 | PIND4 | PIND3 | PIND2 | PINDI__| PINDO 68

O %c) KIsW System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
7-5

Peripheral Devices — Registers (contined)

m for every port x, three registers are defined (example for x = D)

= DDRx Data Direction Register: Determines for every pin i whether it is used
as input (bit /=0) or output (bit /=1).
7 6 5 4 2 1 0
[ooro7 | DDRD6 | DDRDS | DDRD4 | DDRD3 | DDRD2 | DDRD1 | DDRDO |
R/W R/W R/W R/W R/W R/W R/W R/W
m PORTX Data Register: If pin / is configured to be an output, bit i determines

the voltage level (0=GND sink, 1=Vcc source). If pin i is configured to

be an input, bit i activates the internal pull-up resistor (1=active).
7 6 5 4 3 2 1 0

[PORTD7 | PORTD6 | PORTDS | PORTD4 | PORTD3 | PORTD2 | PORTDI1 | PORTDO |
RIW RIW RIW RIW RIW RIW RIW RIW
m PINXx Input Register: Bit i represents the voltage level at pin i (1=high,
H 0=/ow), independent of the data direction of the register.
o 7 6 5 4 3 2 1 0
5 [PnND7 | PND6 [PIND5 | PIND4 [PIND3 [PIND2 | PINDI_ [PINDO]
=3 RIW RIW RIW RIW RIW RIW RIW RIW
5
2
9 Examples: — and — [1]

O %c) KIswW System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
7-6

17-MC-Peripherie _en

Peripheral Devices — Registers (contined)

B Memory-mapped registers enable convenient access
m register — memory — variable
m all C operators are directly available (e. g., PORTD++)

B Syntactically, preprocessor macros simplify the access:

#define PORTD (x(volatile uint8_t x*) 0x12)

O %c)kl?w System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
7

17-MC-Peripherie _en

Peripheral Devices — Registers (contined)

B Memory-mapped registers enable convenient access
m register — memory — variable
m all C operators are directly available (e. g., PORTD++)

B Syntactically, preprocessor macros simplify the access:

#define PORTD (x(volatile uint8_t x*) 0x12)
~—~

address: int

O %c)kl?w System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
7

Peripheral Devices — Registers (contined)

B Memory-mapped registers enable convenient access
m register — memory — variable
m all C operators are directly available (e. g., PORTD++)

B Syntactically, preprocessor macros simplify the access:

#define PORTD (x(volatile uint8_t x*) 0x12)
~—~

address: int

address: volatile uint8 t x(cast — [7-10))

en

5
e
V)
~
=

O %c) KIsW System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
7

MC-Peripherie _en

17-

Peripheral Devices — Registers (contined)

B Memory-mapped registers enable convenient access
m register — memory — variable
m all C operators are directly available (e. g., PORTD++)

B Syntactically, preprocessor macros simplify the access:

#define PORTD (x(volatile uint8_t x*) 0x12)
~—~

address: int

address: volatile uint8 t x(cast — [7-10))

value: volatile uint8 t (dereferencing — [13-4])

O %c) KIsW System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
7

17-MC-Peripherie _en

Peripheral Devices — Registers (contined)

B Memory-mapped registers enable convenient access
m register — memory — variable
m all C operators are directly available (e. g., PORTD++)

B Syntactically, preprocessor macros simplify the access:

Therefore PORTD
is syntactically-
address: int equivalent to a
volatile uint8_t-
variable that is
value: volatile uint8 t (dereferencing — [13-4]) stored at address
0x12.

#define PORTD (x(volatile uint8_t x*) 0x12)
~—~

address: volatile uint8 t x(cast — [7-10))

O %gkl?w System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
7

17-MC-Peripherie _en

Peripheral Devices — Registers (contined)

B Memory-mapped registers enable convenient access
m register — memory — variable
m all C operators are directly available (e. g., PORTD++)

B Syntactically, preprocessor macros simplify the access:

#define PORTD (x(volatile uint8_t x*) 0x12)
~—~

address: int

address: volatile uint8 t x(cast — [7-10))

value: volatile uint8 t (dereferencing — [13-4])

m Example

#define PORTD (x(volatile uint8_t *) 0x12)

PORTD |= (1<<7); // set D.7
uint8_t *pReg = &PORTD; // get pointer to PORTD
*pReg &= ~(1<<7); // use pointer to clear D.7

Therefore PORTD
is syntactically-
equivalent to a
volatile uint8_t-
variable that is
stored at address
0x12.

O &gklgw System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Peripherals
7

17-MC-Peripherie _en

Access to Registers and Concurrency

m Peripheral devices operate concurrently to the software
~> Value in hardware registers can change anytime

B This change in contrast to the assumption of the compiler
m Access to variables only takes place by the currently executed function
~» Variables are temporarily stored in registers

O © KIsw System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Excursion: volatile
17-8

Access to Registers and Concurrency

m Peripheral devices operate concurrently to the software
~> Value in hardware registers can change anytime

B This change in contrast to the assumption of the compiler
m Access to variables only takes place by the currently executed function
~» Variables are temporarily stored in registers

// C code
#define PIND \
(*(uint8_tx*) 0x10)
void foo(void) {
if (! (PIND & 0x2)) {

// button@ pressed

}
if (! (PIND & 0x4)) {

// button 1 pressed
}

17-MC-Peripherie _en

// Resulting assembly code

foo:
lds r24, 0x0010 // PIND->r24
shrc r24, 1 // test bit 1
rjmp L1
// button@ pressed

L1:
sbrc r24, 2 // test bit 2
rjmp L2

L2:
ret

O © Klsw ystem-Level Programming (ST 25)

17 pC-System Architecture — Peripherals — Excursion: volatile
17-8

Access to Registers and Concurrency

m Peripheral devices operate concurrently to the software
~> Value in hardware registers can change anytime
B This change in contrast to the assumption of the compiler
m Access to variables only takes place by the currently executed function
~» Variables are temporarily stored in registers

// C code // Resulting assembly code

#define PIND \
(*x(uint8_tx) 0x10) foo:

void foo(void) { lds r24, 0x0010 // PIND->r24
L shrc r24, 1 // test bit 1
if (! (PIND & 0x2)) { rjmp L1

// button@ pressed
// button@ pressed ..

L1:

} sbrc r24, 2 // test bit 2
if (! (PIND & 0x4)) { rimp L2

PIND is not again loaded
5 // button 1 pressed T from memory. The com-
o o L2: piler assumes the value in
z ¥ ret r24 to still be accurate

= }
O © Klsw ystem-Level Programming (ST 25) T7pC-System Architecture — Peripherals — Excursion: volatile
17-8

17-

MC-Peripherie _en

Details of Assembly Instructions

knowledge how to program assembly instructions not necessary [1]
however, semantics of assembly instructions necessary for
understanding concurrency

lds

= |oad direct s from SRAM
m load variable from memory to a register (for operations)

sbrc

m skip if bit in register cleared

m test condition, depending on condition’s result, skip following instruction
rjmp

m relative jump

ret

m return address is popped from the stack
m return from a function call

O © KIsw ystem-Level Programming (ST 25) T7pC-System Architecture — Peripherals — Excursion: volatile
17-9

The volatile Type Modifier

m Solution: declare variable as volatile (“transient, changeable”)
s Compiler minimizes the time, the variable is held in registers
~» value is read immediately before use
~» value is written immediately after modification

17-MC-Peripherie _en

O © KIsw ystem-Level Programming (ST 25) T7pC-System Architecture — Peripherals — Excursion: volatile
17-10

The volatile Type Modifier

m Solution: declare variable as volatile (“transient, changeable”)

O

s Compiler minimizes the time, t

he variable is held in registers

~» value is read immediately before use
~» value is written immediately after modification

// C code
#define PIND \
(*x(volatile uint8_tx*) 0x10)

// Resulting assembly code

void foo(void) { foo:
... lds r24, 0x0010 // PIND->r24
if (! (PIND & 0x2)) { shrc r24, 1 // test bit 1
rjmp L1
// buttonO pressed // buttonO pressed
} L1:
lds r24, 0x0010 // PIND->r24
if (! (PIND & 0x4)) { sbrc r24, 2 // test bit 2
rjmp L2
// button 1 pressed PIND is declared as
e Tt volatile. It is therefore
¥ L2: loaded from memory befo-
} ret re each test.
© Klsw ystem-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Excursion: volatile

17-10

17-MC-Peripherie _en

The volatile Type Modifier (conines

B volatile semantics prevent many code optimizations;
in particular the removal of apparently unnecessary code

B volatile can be used to implement active waiting:

// C code // Resulting assembly code
void wait(void) { wait:
for(uintl6_t i=0; i<Oxffff; i++); // compiler has optimized
// "unneeded" loop
} ret

O © Klsw System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Excursion: volatile
17-11

17-MC-Peripherie _en

The volatile Type Modifier (conines

B volatile semantics prevent many code optimizations;
in particular the removal of apparently unnecessary code

B volatile can be used to implement active waiting:

// C code // Resulting assembly code
void wait(void) { wait:
for(uintl6e_t i=0; i<Oxffff; i++); // compiler has optimized
// "unneeded" loop
}volatile! ret

O © Klsw System-Level Programming (ST 25) T7 pC-System Architecture — Peripherals — Excursion: volatile
17-11

17-MC-Peripherie _en

The volatile Type Modifier (conines

volatile semantics prevent many code optimizations;
in particular the removal of apparently unnecessary code

volatile can be used to implement active waiting:

// C code // Resulting assembly code
void wait(void) { wait:
for(uintl6e_t i=0; i<Oxffff; i++); // compiler has optimized
// "unneeded" loop
}volatile! ret

Attention: volatile — $$$

The use of volatile causes considerable runtime penalties
= Values cannot be stored in registers any longer
m Most code optimizations cannot be performed any longer

Rule: Use volatile only in justified scenarios

O © KIsw System-Level Programming (ST 25) T7pC-System Architecture — Peripherals — Excursion: volatile
17-11

17-MC-Peripherie _en

Peripheral Devices: Ports

B Port := group of (usually 8) digital inputs/outputs

m Digital output: bit value — voltage level at pC pin
= Digital input: voltage level at pC pin > bit value
m External interrupt: voltage level at pC pin — bit value

(on voltage change) ~ processor executes interrupt program

B This function is usually configurable per pin
= Input
= Output
= External interrupt (only for some inputs)

m Alternative functions (pin used by another device)

O © klsw System-Level Programming (ST 25) 17 uC-System Architecture — Peripherals — Ports 17-12

Example ATmega328PB: Port/Pin Assignment

[Power
W Ground
[l Programming/debug
[oigital
[Analog

[l costarcLk

(OC2B/INT1/PTCXY) PD3
(XCKO/TO/PTCXY) PD4
(SDA1/ICP4/ACO/PTCXY) PEO

(SCL1/T4/PTCXY) PE1
(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7

PTCXY/INTO/OC3B/OC4B)

PTCXY/OC4A/TXDO)

PTCXY/OC3A/RXDO)

RESET)

(ADC5/PTCY/SCLO)
(ADC4/PTCY/SDAO)

(ADC3/PTCY)

(ADC2/PTCY)

PD2
PD1
PDO
PC6

28 [N PC5

PD5

0

27 ¥ Pc4

26 [N PC3

25 § Pc2

PD6 [N

PD7 N
PBO
PB1
PB2
PB3
PB4

(OCOB/T1/PTCXY
(OCOA/PTCXY/AINO;

(PTCXY/AIN1

(S50

(MOSIOTXD1

RXD1/PTCXY

(MISO0

24 [PC1 (ADC1/PTCY/SCK1)
23 [PCO (ADCO/PTCY/MISO1)
22 [/ PE3 (ADC7/PTCY/T3/MOSI1)

For reasons of cost ef-
ficiency nearly every pin
is assigned twice. The
configuration of the re-
spective functionality
takes place in software.

E.g., pins 23-24 are
configured as ADCs
at the SPiCBoard to
connect potentiometer
and photo sensor.

Those pins are there-
fore not available for
PORTC.

O © klsw System-Level Programming (ST 25) 17 uC-System Architecture — Peripherals — Ports

17-13

References

[1] ATmega328PB 8-bit AVR Microcontroller with 32K Bytes In-System
Programmable Flash. Atmel Corporation. Okt. 2015. URL:
https://sys.cs.fau.de/extern/lehre/ss25/spic/uebung/spicboard/Atmel-
42397-8-bit-AVR-Microcontroller-ATmega328PB_Datasheet.pdf.

17-MC-Peripherie _en

O © klsw System-Level Programming (ST 25) 17 uC-System Architecture — Peripherals — Ports 17-14

https://sys.cs.fau.de/extern/lehre/ss25/spic/uebung/spicboard/Atmel-42397-8-bit-AVR-Microcontroller-ATmega328PB_Datasheet.pdf
https://sys.cs.fau.de/extern/lehre/ss25/spic/uebung/spicboard/Atmel-42397-8-bit-AVR-Microcontroller-ATmega328PB_Datasheet.pdf

	17 µC-System Architecture – Peripherals
	Overview
	Peripherals
	Excursion: volatile
	Ports

