13-Zeiger _en

O

System-Level Programming

13 Pointers & Arrays

J. Kleinoder, D. Lohmann, V. Sieh, P. Wagemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

en

13-Zeiger

Classification: Pointers

m Literal: 'a’ 'a’ = 0110 0001

representation of a value

B Variable: char a; a ﬂ

container for a value

B Pointer variable: a
char xp = &a;
container for a reference p
to a variable

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers — Introduction

13-1

13-Zeiger _en

Pointers

A pointer variable contains a memory address of a

different variable as its value

= A pointer points to another variable (in memory)

= With the address, an indirect access to the target
variable (its memory) is possible

Therefore pointers are of major relevance for C programming

= Functions now can change variables of the caller —
(call by reference)

= Memory can be addressed directly

= More efficient programs

“Efficiency by
machine orientation”
o
However, pointers lead to many problems!
= Structure of programs gets complicated
(which functions can access which variables?)
m Pointers are the most common cause for errors in C programs!

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers — Introduction 13-2

Definition of Pointer Variables

m Pointer variable := container for reference (+ address)
m Syntax (definition): type *identifier;

m Example

int x = 5; X 5

. g)
B ip
int y;

v y [— |

13-Zeiger _en

13 Pointers & Arrays — Pointers — Definition

O

© klsw System-Level Programming (ST 25)

13-3

Definition of Pointer Variables

m Pointer variable := container for reference (+ address)

m Syntax (definition): type *identifier;

m Example
: e 3
i —{ @ |
y ?
ip = &x; O

en

13-Zeiger

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers — Definition

13-3

Definition of Pointer Variables

m Pointer variable := container for reference (+ address)

m Syntax (definition): type *identifier;

m Example
X 5
ip [B
ip = &x; O

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers — Definition 13-3

Definition of Pointer Variables

m Pointer variable := container for reference (+ address)

m Syntax (definition): type *identifier;

i
L 1

m Example

y = *ip; ©

en

13-Zeiger

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers — Definition

13-3

Definition of Pointer Variables

m Pointer variable := container for reference (+ address)

m Syntax (definition): type *identifier;

X 5.
i
L 1

)
y |

m Example

y = *ip; ©

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers — Definition 13-3

Definition of Pointer Variables

m Pointer variable := container for reference (+ address)

m Syntax (definition): type *identifier;

X 5.

y 5%

m Example

y = *ip; ©

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers — Definition 13-3

Definition of Pointer Variables

m Pointer variable := container for reference (+ address)

m Syntax (definition): type *identifier;

m Example
int x = 5; X 5
int *ip; ip . 1© o
L :
int y; -
y 5=
ip = &x; O

y = *ip; @

en

13-Zeiger

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers — Definition 13-3

13-Zeiger _en

Address and Reference Operators

m Address-of operator: &x

also named address operator,
B Dereference operator: *y

m \Valid code: (*(&x)) = x

The unary & operator provides the
reference (— address in memory) of the
variable x.

memory aid: &ddress operator

The unary = operator provides the target
variable (— memory cell / container), to
which the pointer y points (dereferencing).

The reference operator is the inverse
operation to the address operator.

O © klsw System-Level Programming (ST 25)

13 Pointers & Arrays — Pointers — Definition 13-4

13-Zeiger _en

O

Address and Reference Operators

Address-of operator: &x The unary & operator provides the
reference (— address in memory) of the
variable x.

also named address operator, memory aid: &ddress operator

Dereference operator: xy The unary * operator provides the target

variable (— memory cell / container), to
which the pointer y points (dereferencing).

Valid code: (* (&x)) = x The reference operator is the inverse
operation to the address operator.

Attention: Risk of Confusion (¥*** [see stars everywhere ***)
The * symbol has different meanings in C depending on the context:

1. Multiplication (binary): x * y in expressions

2. Type modifier: uint8_t =pl, *p2 in definitions and
typedef char *CPTR declarations

3. Reference (unary): x = xpl in expressions

In particular 2. and 3. often cause confusion
~ * is erroneously considered as part of the identifier.

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers — Definition 13-4

Pointers as Function Arguments

B In C, parameters are always passed by value o
m Values of parameters are copied to local variables of the called function
= The called function cannot change the actual parameters of the calling

function

m This is also true for pointers (references)
m The called function receives a copy of the address reference
= With help of the * operators, the target variable can be accessed and its
value can be changed

~ call by reference

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers and Functions 13-5

Pointers as Function Arguments (continued)

B Example (overview)

void swap (int *, int *); a
int main() {
int a=47, b=11;

x;x:r;p(&a, &b); © 0

}

- CE
void swap (int *px, int *py) “J ‘' '

oo
E]
©
H

tmp = *px; O
*PX = *py;
*py = tmp;
}
O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers and Functions 13-6

Pointers as Function Arguments (continued)

B Example (step by step)

int main() {
int a=47, b=11;

13-Zeiger _en

O © klsw System-Level Programming (ST 25)

13 Pointers & Arrays — Pointers and Functions

13-6

Pointers as Function Arguments (continued)

B Example (step by step)
void swap (int *, int *); a 47
b 11

void swap (int *px, int *py) pxz
{
p

tm

L3

en

13-Zeiger

13-6

13 Pointers & Arrays — Pointers and Functions

O © klsw System-Level Programming (ST 25)

Pointers as Function Arguments (continued)

B Example (step by step)

a C 47
& P
swap (&a, &b);
px—| D |
vy e

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers and Functions 13-6

Pointers as Function Arguments (continued)

B Example (step by step)

i 0"6' Ll 4 7
o | | |
:

&
&
o;

swap (&a, &b); O

I
H
N
]

¥
.
¥
]
[
n
[
]
¥
]
3
v
L]

void swap (int *px, int *py) pX—{ ‘

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers and Functions 13-6

Pointers as Function Arguments (continued)

B Example (step by step)

void swap (int *px, int
{
int tmp;

13-Zeiger _en

py-{——

tmp

O © klsw System-Level Programming (ST 25)

13 Pointers & Arrays — Pointers and Functions

13-6

Pointers as Function Arguments (continued)

B Example (step by step)
a ﬁ 47
b 11
o[}

oy e

e tmp

J

tmp = *px;

en

13-Zeiger

13-6

13 Pointers & Arrays — Pointers and Functions

O © klsw System-Level Programming (ST 25)

Pointers as Function Arguments (continued)

B Example (step by step)

13-Zeiger _en

=
SN

|

A

tmp

O © klsw System-Level Programming (ST 25)

13 Pointers & Arrays — Pointers and Functions

13-6

Pointers as Function Arguments (continued)

B Example (step by step)

oy e

px" ° tmp a7

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers and Functions 13-6

Pointers as Function Arguments (continued)

B Example (step by step)
a ﬁ 47
b 11
o[}

Py
tmp 47

*px = *py; ©

en

13-Zeiger

13-6

13 Pointers & Arrays — Pointers and Functions

O © klsw System-Level Programming (ST 25)

Pointers as Function Arguments (continued)

B Example (step by step)

*px ° tmp 47

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers and Functions 13-6

Pointers as Function Arguments (continued)

B Example (step by step)

11

P
Py =
oGy © tmp | T |

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers and Functions 13-6

Pointers as Function Arguments (continued)

B Example (step by step)

*p *py; ©

13-Zeiger _en

o[}
E—

tmp

4

7

O © klsw System-Level Programming (ST 25)

13 Pointers & Arrays — Pointers and Functions

D ::@ee
I\ |

13-6

Pointers as Function Arguments (continued)

B Example (step by step)
a ﬁ 11
b 11
o[}

Py
tmp 47

*py = tmp; O

en

13-Zeiger

13-6

13 Pointers & Arrays — Pointers and Functions

O © klsw System-Level Programming (ST 25)

Pointers as Function Arguments (continued)

B Example (step by step)

tmp; O

-

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers and Functions 13-6

Pointers as Function Arguments (continued)

B Example (step by step)

J—

tmp 47

-

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointers and Functions 13-6

13-Zeiger _en

Arrays [~ Python]

® Array variable := container for a list of values of same type

m Syntax (definition): type identifier [IntExpression] ;

= type type of the values [=Python]
" jdentifier name of the array variable [=Python]
® |ntExpression constant integer expression, defines the size of [#Python]
the array (— number of elements).
From C99 onwards, the IntExpression of auto
arrays can be chosen variably (i.e., arbitrary, but
constant).

m Example:

static uint8_t LEDs[8 * 2]; // constant, fixed array size

void f(int n) {
auto char a[NUM_LEDS * 2]; // constant, fixed array size
auto char b[n]; // C99: variable, fixed array size

}

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays — Introduction 13-7

Array Initialization

B Like other variables, an array can receive a set of initial values
during definition

uint8_t LEDs[4]

{ REDO, YELLOWO, GREENO, BLUEO };
int prim[5] {1, 2,

3, 5, 7};

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays — Introduction

13-8

Array Initialization

B Like other variables, an array can receive a set of initial values
during definition

uint8_t LEDs[4]

{ REDO, YELLOWO, GREENO, BLUEO };
int prim[5] {1, 2,

3, 5, 7};

m [If not all initializing elements are given, the remainder is initialized
with 0

uint8_t LEDs[4] 0, 0}
int prim[5] 0, 0}

EDO }; // => { REDO
2

; , 9,
113}; //=={1, 2, 3,

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays — Introduction 13-8

Array Initialization

B Like other variables, an array can receive a set of initial values
during definition

uint8_t LEDs[4]
int prim[5]

{ RED@, YELLOW®, GREENO, BLUEO };
{1,235 7%}

m [If not all initializing elements are given, the remainder is initialized
with 0

uint8_t LEDs[4]

0
int prim[5] 0

{ REDO } // => { REDO
{1, 2

; s O,
2, 3% //={1, 2, 3,

0}
0}
m [f the explicit dimension of the array is omitted, the number of

initializing elements determines the size

uint8_t LEDs[]
int prim[]

{ REDO, YELLOWO, GREENO, BLUEO };
{1, 2,3,5, 7%}

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays — Introduction 13-8

13-Zeiger _en

Access to Arrays

m Syntax: array [IntExpression] [=Python]

m With 0 < IntExpression < n for n = size of the array

= Attention: The index is not checked
~» common cause for errors in C programs

m Example

uint8_t LEDs[] = { REDO®, YELLOWO, GREENO, BLUEO };
LEDs[3] = BLUEL;

for (unit8_t i = 0; i < 4; i++) {

sb_led_on(LEDs[i]); (* YO X+)
}

LEDs[4] = GREEN1; // UNDEFINED!!!

[£Python]

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays — Introduction

13-9

Arrays are Pointers

B The identifier of an array is syntactically equivalent to a constant
pointer to the first element of the array: array = &array[0]

= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

m Example (overview)

int *ip = array; O

e 10

int *ep; (13
ep = &array[0]; ©®

ep = &arrayl[2]; ©

*ep = 1; O -
ep—1 =18

O © klsw System-Level Programming (ST 25)

13 Pointers & Arrays — Syntactical Equivalence 13-10

Arrays are Pointers

B The identifier of an array is syntactically equivalent to a constant
pointer to the first element of the array: array = &array[0]

= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

m Example (step by step)

int arrayl[5]; array = .

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence 13-10

Arrays are Pointers

B The identifier of an array is syntactically equivalent to a constant
pointer to the first element of the array: array = &array[0]

= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

m Example (step by step)

array = T e—

int *ip = array; O

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence 13-10

13-Zeiger _en

O

Arrays are Pointers

The identifier of an array is syntactically equivalent to a constant
pointer to the first element of the array: array = &array[0]

= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

Example (step by step)

array = s

int *ep;

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence 13-10

en

13-Zeiger

Arrays are Pointers

The identifier of an array is syntactically equivalent to a constant
pointer to the first element of the array: array = &array[0]

= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

Example (step by step)

array = s

ep = &array[0]; ©®

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence 13-10

13-Zeiger _en

Arrays are Pointers

B The identifier of an array is syntactically equivalent to a constant

pointer to the first element of the
= An alias — not a container ~ value

array: array = &array[0]
cannot be changed

m Via such a pointer, the indirect access to array cells is possible

m Example (step by step)

array =
(2
ep = &array[0]; ©®
ip .
[

op— (@

O © klsw System-Level Programming (ST 25) 13 Po

inters & Arrays — Syntactical Equivalence 13-10

13-Zeiger _en

Arrays are Pointers

B The identifier of an array is syntactically equivalent to a constant

pointer to the first element of the array: array = &array[0]

= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

m Example (step by step)

array = s

ep = &array[0]; ©®

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence

13-10

en

13-Zeiger

Arrays are Pointers

pointer to the first element of the array: array = &array[0]

= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

m Example (step by step)

array = . §

The identifier of an array is syntactically equivalent to a constant

ep = &arrayl[2]; © . 1
P ip

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence

13-10

13-Zeiger _en

Arrays are Pointers

B The identifier of an array is syntactically equivalent to a constant
pointer to the first element of the array: array = &array[0]

= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

m Example (step by step)

array = s

ep (= &arrayl[2]; © .
ip .

ep—| D |
*,

”Il---------l”

.-é-.-------

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence 13-10

en

13-Zeiger

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence 13-10

Arrays are Pointers

B The identifier of an array is syntactically equivalent to a constant

pointer to the first element of the array: array = &array[0]

= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

m Example (step by step)

array = s

ep = &arrayl[2]; © . 1
P ip

en

13-Zeiger

Arrays are Pointers

The identifier of an array is syntactically equivalent to a constant
pointer to the first element of the array: array = &array[0]
= An alias — not a container ~ value cannot be changed

m Via such a pointer, the indirect access to array cells is possible

m Example (step by step)

array = s

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence 13-10

Arrays are Pointers

B The identifier of an array is syntactically equivalent to a constant
pointer to the first element of the array: array = &array[0]
= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

m Example (step by step)

*ep

13-Zeiger _en

array = .
ip .
e]
L 7 o

O © klsw

System-Level Programming (ST 25)

13 Pointers & Arrays — Syntactical Equivalence 13-10

Arrays are Pointers

B The identifier of an array is syntactically equivalent to a constant
pointer to the first element of the array: array = &array[0]

= An alias — not a container ~ value cannot be changed
m Via such a pointer, the indirect access to array cells is possible

m Example (step by step)

array = s

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence 13-10

13-Zeiger _en

Pointers are Arrays

B The identifier of an array is syntactically equivalent to a constant
pointer to the first element of the array: array = &array[0]

m This relation is valid in both directions: xarray = array[0]
= A pointer can be used like an array
= In particular, the []- operator can be used —

m Example (see < [13-9))

uint8_t LEDs[] = { REDO®, YELLOWO®, GREENO, BLUEO };

LEDs[3]
uint8_t *p

BLUE1;
LEDs;

for (unit8_t i =0; i < 4; i++) {

sb_led_on(p[il); Q99 o
}

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Syntactical Equivalence 13-11

13-Zeiger _en

O

Arithmetic Operations on Pointers

In contrast to the identifier of an array, a pointer variable is a
container ~» its value can be modified

Besides simple assignments, arithmetic operations are possible

int arrayl[3]; array =
int *ip = array; ©

ip++; @
ip++; ©

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic 13-12

13-Zeiger _en

Arithmetic Operations on Pointers

B In contrast to the identifier of an array, a pointer variable is a
container ~» its value can be modified

B Besides simple assignments, arithmetic operations are possible

int arrayl[3]; array =

int *ip = array; O

O

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic

13-12

Arithmetic Operations on Pointers

B In contrast to the identifier of an array, a pointer variable is a

container ~~ its value can be modified

B Besides simple assignments, arithmetic operations are possible

array =

13-Zeiger _en

O © klsw System-Level Programming (ST 25)

13 Pointers & Arrays — Pointer Arithmetic

13-12

Arithmetic Operations on Pointers

B In contrast to the identifier of an array, a pointer variable is a
container ~» its value can be modified

B Besides simple assignments, arithmetic operations are possible

array =

ip++; @

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic 13-12

13-Zeiger _en

Arithmetic Operations on Pointers

B In contrast to the identifier of an array, a pointer variable is a
container ~» its value can be modified

B Besides simple assignments, arithmetic operations are possible

array =

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic

13-12

13-Zeiger _en

Arithmetic Operations on Pointers

B In contrast to the identifier of an array, a pointer variable is a
container ~» its value can be modified

B Besides simple assignments, arithmetic operations are possible

array =

ip++; ©

S

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic

13-12

13-Zeiger _en

Arithmetic Operations on Pointers

B In contrast to the identifier of an array, a pointer variable is a
container ~» its value can be modified

B Besides simple assignments, arithmetic operations are possible

array =

ip++; © I
ip —{ A

int arrayl[5]:;
ip = array; ©

ip+3; ©

O

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic 13-12

13-Zeiger _en

O

Arithmetic Operations on Pointers

In contrast to the identifier of an array, a pointer variable is a
container ~» its value can be modified

Besides simple assignments, arithmetic operations are possible

array =

ip++; © I
ip —{ A

int arrayl[5]:;
ip = array; ©

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic 13-12

13-Zeiger _en

O

Arithmetic Operations on Pointers

In contrast to the identifier of an array, a pointer variable is a
container ~» its value can be modified

Besides simple assignments, arithmetic operations are possible

array =
ip++; © I
ip -
|

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic 13-12

13-Zeiger _en

B Besides simple assignments, arithmetic operations are possible

O

Arithmetic Operations on Pointers

In contrast to the identifier of an array, a pointer variable is a
container ~» its value can be modified

array =

ip++; ©

S

ip = ip+3; @

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic

13-12

13-Zeiger _en

O

Arithmetic Operations on Pointers

In contrast to the identifier of an array, a pointer variable is a
container ~» its value can be modified

Besides simple assignments, arithmetic operations are possible

array =

ip++; © I
ip —{ A

(ip+3) = &ipl[3]

When using arithmetic
operations on pointers,
the size of the type of

ip 4E—F. one object is always ta-

ken into account.

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic 13-12

Pointer Arithmetic — Operations

B Arithmetic operations

++4 pre/post increment
~~ shift to the next object

—— pre/post decrement
~ shift to previous object

+, — addition / subtraction of an int value
~ resulting pointer is moved by n objects

— subtraction of two pointers
~> number of objects n between the pointers (distance)

m Comparison operators: <, <=, ==, >=, >, | =
~ pointers can be compared and ordered like integers

13-Zeiger _en

—

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic

13-13

Arrays are Pointers are Arrays — Summary

B |n combination with arithmetic operations for pointers, each array
operation can be mapped to an equivalent pointer operation.

B For int i, array[N], *ip = array; with 0 </ < N holds:

array = G&array[0] = ip = &ipl[0]
xarray = array[0] = =xip = ipl[o]
*(array + i) = array[i] *x(ip + 1) = 1iplil

array++ FZ ip++

Error: array is constant!

B In contrary, pointer operations can be represented by array
operations.
However, the identifier of the array cannot be modified.

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Pointer Arithmetic 13-14

Arrays as Function Arguments

B Arrays are always passed as pointers in C
static uint8_t LEDs[] = { REDO, YELLOW1l };

void enlight(uint8_t *array, unsigned n) {
for (unsigned i = 0; 1 < n; i++)
sb_led_on(array[il);
}

void main() {
enlight (LEDs, 2); o
uint8_t moreLEDs[] = { YELLOWO, BLUE®, BLUE1 };

) enlight(moreLEDs, 3); ?090 ?0

B [nformation on size of the array is lost!
m The size has to passed explicitly as another parameter

Q ©
)

m |n some cases, the size can be calculated inside the function
(e. g., by searching for the terminating NUL symbol at the end of a
string)

@

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays as Arguments 13-15

Arrays as Function Arguments (ontinuea)

B Arrays are always passed as pointers in C

m If the parameter is declared as const, the function
cannot modify the elements of the array — good style!

void enlight(const uint8_t *array, unsigned n) {

}

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays as Arguments

13-16

13-Zeiger _en

Arrays as Function Arguments (ontinuea)

B Arrays are always passed as pointers in C

m If the parameter is declared as const, the function
cannot modify the elements of the array — good style!

void enlight(const uint8_t *array, unsigned n) {

}

m To clarify, that an array (and not a “pointer to a variable”) is
expected, one can use the following equivalent syntax:

void enlight(const uint8_t array[], unsigned n) {

}

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays as Arguments

13-16

13-Zeiger _en

O

Arrays as Function Arguments (ontinuea)

Arrays are always passed as pointers in C

If the parameter is declared as const, the function
cannot modify the elements of the array — good style!

void enlight(const uint8_t *array, unsigned n) {

}

To clarify, that an array (and not a “pointer to a variable”) is
expected, one can use the following equivalent syntax:

void enlight(const uint8_t array[], unsigned n) {

}

= Attention: This is only valid for declaring function parameters
m For defining variables, array[] has a entirely different meaning
(identifying size of the array from list of initializers < [13-8])

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays as Arguments

13-16

Arrays as Function Arguments (ontinuea)

B The function int strlen(const char =) from the standard library
provides the number of characters of the passed string

void main() {

const char xstring = "hello"; // string is array of char
sb_7seg_showNumber(strlen(string));

It holds: “hello” = LURMEN I o000 < [6-13]

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays as Arguments 13-17

Arrays as Function Arguments (ontinuea)

B The function int strlen(const char =) from the standard library
provides the number of characters of the passed string

void main() {

const char xstring = "hello"; // string is array of char
sb_7seg_showNumber(strlen(string));

It holds: "hello" = LER e (1100 — |6-13

m Variants of implementation

option 1: array syntax option 2: pointer syntax
int strlen(const char s[]) { int strlen(const char *s) {
int n = 0; const char *end = s;
s while (s[n] != "\0") while (xend != "\0")
n++; end++;
g) return n; return end - s;
A }

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Arrays as Arguments 13-17

Pointers to Pointers

B A pointer can point to another pointer variable

int x = 5; X 5
int *ip = &x;
ip
int **ipp = &ip;
/* > xipp=5 */ .
pp

B This is particularly useful for passing parameters to functions

m pointer parameter is passed call by reference
(e.g., swap() function for pointers)

m passing an array of pointers

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Extended Pointer Types 13-18

13-Zeiger _en

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Extended Pointer Types 13-19

Pointers to Functions

A pointer can point to a function
m With this feature, functions are passed as parameters to other functions
— functions of higher order

Example

// invokes job() every second
void doPeriodically(void (*job)(void)) {
while (1) {
job(); // invoke job
for (volatile uintl6_t i = 0; i < Oxffff; i++)
; // wait a second
}
}

void blink(void) {
sb_led_toggle(REDO) ;
}

void main() {
doPeriodically(blink); // pass blink() as parameter
¥

13-Zeiger _en

Pointers to Functions (continea

m Syntax (definition): type (*identifier)(formalParamqpt);

(similar to function definitions) —
= fype return value of the functions the pointer can point to

" jdentifier name of the function pointer

B formalParamgpt formal parameters of the functions the pointer can

point to: type,..., type,
B A function pointer is used in the same way as a function

m call with identifier(actParam) —
m address (&) and reference operator (*) are not required —
m an identifier of a function is a constant pointer to that function

void blink(uint8_t which) { sb_led_toggle(which); }

void main() {
void (*myfun)(uint8_t); // myfun is pointer to function

myfun = blink; // blink is constant pointer to function
myfun (REDO) ; // invoke blink() via function pointer
blink (REDO) ; // invoke blink()

¥

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Extended Pointer Types

13-20

13-Zeiger _en

Pointers to Functions (continea

Function pointers are often used for callback functions to deliver
asynchronous events (— “listener” pattern)

// Example: asynchronous button events with libspicboard

#include <avr/interrupt.h> // for sei()
#include <7seg.h> // for sb_7seg_showNumber()
#include <button.h> // for button stuff

// callback handler for button events (invoked on interrupt level)
void onButton(BUTTON b, BUTTONEVENT e) {
static int8_t count = 1;

sb_7seg_showNumber (count++); // show no of button presses
if (count > 99) count = 1; // reset at 100
h
void main() {
sb_button_registerCallback(// register callback
BUTTONO, BUTTONEVENT_PRESSED, // for this button and events
onButton // invoke this function
)i
sei(); // enable interrupts (necessary!)
while (1) {} // wait forever
}

O © klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Extended Pointer Types 13-21

13-Zeiger _en

O

Summary

A pointer references a variable in memory

possibility for indirect access to a value

basis for implementation of call-by-reference in C

basis for implementation of arrays
important part of the machine orientation of C

= most common cause for errors in C programs!

The syntactical possibilities are diverse (and confusing)
m type modifier *, address operator &, reference operator *
= pointer arithmetic with +, -, ++, and - -

m syntactical equivalence between pointers and arrays ([1 Operator)

Pointers can point to functions
m pass functions to functions

m principle of callback functions

© klsw System-Level Programming (ST 25) 13 Pointers & Arrays — Summary 13-22

	13 Pointers & Arrays
	Pointers – Introduction
	Pointers – Definition
	Pointers and Functions
	Arrays – Introduction
	Syntactical Equivalence
	Pointer Arithmetic
	Arrays as Arguments
	Extended Pointer Types
	Summary

