
System-Level Programming

12 Program Structure and Modules

J. Kleinöder, D. Lohmann, V. Sieh, P. Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

12
-M

od
ul

e_
en

http://sys.cs.fau.de/lehre/ss25

Software Design

Software design: general considerations about program’s structure
before the actual programming/implementation

Goal: Partitioning of the problem in manageable sub-problems

There exists a multitude of different approaches for software design
Object-oriented approach

decomposition into classes and objects
designed for Python, Java, or C++

Top-down design / functional decomposition
state-of-the-art approach until the mid 80s
decomposition into functions and function calls
design constraints for FORTRAN, COBOL, Pascal, or C

System-level software is still designed with
the functional decomposition in mind.

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Introduction 12–1

12
-M

od
ul

e_
en

Software Design

Software design: general considerations about program’s structure
before the actual programming/implementation

Goal: Partitioning of the problem in manageable sub-problems

There exists a multitude of different approaches for software design
Object-oriented approach

decomposition into classes and objects
designed for Python, Java, or C++

Top-down design / functional decomposition
state-of-the-art approach until the mid 80s
decomposition into functions and function calls
design constraints for FORTRAN, COBOL, Pascal, or C

System-level software is still designed with
the functional decomposition in mind.

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Introduction 12–1

12
-M

od
ul

e_
en

Example Project: A Weather Station

Typical embedded system
multiple sensors

!"#$$%"&'()*+",-./'(("'(0"1+'2"34)(5678 !

"#$%&'()*(+%&,-.*(/%)$

0+&1

2#$3

45676

-)#''8)#

95:

;<%&()%..#),=>?4@

3*(9-:9

;#<

"+'3.*A
air speed
air pressure
temperature

multiple actuators
(here: output devices)

LCD-screen
PC via RS232
PC via USB

Sensors and actuators are connected to
the µC via different bus systems

I2C
RS232

What does functional decomposi-
tion of the software look like?

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Functional Decomposition
12–2

12
-M

od
ul

e_
en

Example Project: A Weather Station

Typical embedded system
multiple sensors

!"#$$%"&'()*+",-./'(("'(0"1+'2"34)(5678 !

"#$%&'()*(+%&,-.*(/%)$

0+&1

2#$3

45676

-)#''8)#

95:

;<%&()%..#),=>?4@

3*(9-:9

;#<

"+'3.*A
air speed
air pressure
temperature

multiple actuators
(here: output devices)

LCD-screen
PC via RS232
PC via USB

Sensors and actuators are connected to
the µC via different bus systems

I2C
RS232

What does functional decomposi-
tion of the software look like?

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Functional Decomposition
12–2

12
-M

od
ul

e_
en

Functional Decomposition: Example

Functional decomposition of the weather station:
1. read sensor data

2. process data (e. g., smoothing)
3. output data

4. wait and eventually re-start
again with step 1

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Functional Decomposition
12–3

12
-M

od
ul

e_
en

!"#$$%"&'()*+",-./'(("'(0"1+'2"34)(5678 !

"#$%&'()*(+%&,-.*(/%)$

0+&1

2#$3

45676

-)#''8)#

95:

;<%&()%..#),=>?4@

3*(9-:9

;#<

"+'3.*A

Functional Decomposition: Example

Functional decomposition of the weather station:
1. read sensor data
1.1 read the temperature sensor
1.2 read the pressure sensor
1.3 read the air speed sensor

2. process data (e. g., smoothing)
3. output data

4. wait and eventually re-start
again with step 1

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Functional Decomposition
12–3

12
-M

od
ul

e_
en

!"#$$%"&'()*+",-./'(("'(0"1+'2"34)(5678 !

"#$%&'()*(+%&,-.*(/%)$

0+&1

2#$3

45676

-)#''8)#

95:

;<%&()%..#),=>?4@

3*(9-:9

;#<

"+'3.*A

Functional Decomposition: Example

Functional decomposition of the weather station:
1. read sensor data
1.1 read the temperature sensor
1.1.1 initialize I2C data transfer
1.1.2 read data from the I2C-bus

1.2 read the pressure sensor
1.3 read the air speed sensor

2. process data (e. g., smoothing)
3. output data

4. wait and eventually re-start
again with step 1

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Functional Decomposition
12–3

12
-M

od
ul

e_
en

!"#$$%"&'()*+",-./'(("'(0"1+'2"34)(5678 !

"#$%&'()*(+%&,-.*(/%)$

0+&1

2#$3

45676

-)#''8)#

95:

;<%&()%..#),=>?4@

3*(9-:9

;#<

"+'3.*A

Functional Decomposition: Example

Functional decomposition of the weather station:
1. read sensor data
1.1 read the temperature sensor
1.1.1 initialize I2C data transfer
1.1.2 read data from the I2C-bus

1.2 read the pressure sensor
1.3 read the air speed sensor

2. process data (e. g., smoothing)
3. output data
3.1 sending data via RS232
3.2 refresh the LCD

4. wait and eventually re-start
again with step 1

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Functional Decomposition
12–3

12
-M

od
ul

e_
en

!"#$$%"&'()*+",-./'(("'(0"1+'2"34)(5678 !

"#$%&'()*(+%&,-.*(/%)$

0+&1

2#$3

45676

-)#''8)#

95:

;<%&()%..#),=>?4@

3*(9-:9

;#<

"+'3.*A

Functional Decomposition: Example

Functional decomposition of the weather station:
1. read sensor data
1.1 read the temperature sensor
1.1.1 initialize I2C data transfer
1.1.2 read data from the I2C-bus

1.2 read the pressure sensor
1.3 read the air speed sensor

2. process data (e. g., smoothing)
3. output data
3.1 sending data via RS232
3.1.1 choose baud rate and parity (once)
3.1.2 write data

3.2 refresh the LCD

4. wait and eventually re-start
again with step 1

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Functional Decomposition
12–3

12
-M

od
ul

e_
en

!"#$$%"&'()*+",-./'(("'(0"1+'2"34)(5678 !

"#$%&'()*(+%&,-.*(/%)$

0+&1

2#$3

45676

-)#''8)#

95:

;<%&()%..#),=>?4@

3*(9-:9

;#<

"+'3.*A

Functional Decomposition: Problems

The obtained decomposition does only account for the structure of
the activities; however, not for the structure of the data
Risk: Functions “wildly” work on a vast amount of unstructured data
; inadequate separation of concerns

Data

I2CStart()

I2CRec()

GetTemp()

SendToPC()

RS232Init()

RS232Send()

sendBuf[]

baud

init lastTemp

lastWind

Activities

curDev

main()

Principle of separation of concerns
Parts that have nothing in common with each other
should be placed separately!
Separation of concerns is a fundamental principle
in computer science (likewise in each other engineering discipline).

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Functional Decomposition
12–4

12
-M

od
ul

e_
en

Functional Decomposition: Problems

The obtained decomposition does only account for the structure of
the activities; however, not for the structure of the data

Risk: Functions “wildly” work on a vast amount of unstructured data
; inadequate separation of concerns

Principle of separation of concerns
Parts that have nothing in common with each other
should be placed separately!
Separation of concerns is a fundamental principle
in computer science (likewise in each other engineering discipline).

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Functional Decomposition
12–4

12
-M

od
ul

e_
en

Access to Data (Variables)

Variables have ↪→ 10–1

Scope “Who can access the variable?”

Lifespan “How long is the memory accessible?”

These are determined by their position (pos) and storage class (sc)
pos sc 7→ scope lifespan

local none, auto definition → end of block definition → end of block
static definition → end of block program start → program end

global none unrestricted program start → program end
static whole module program start → program end

int a = 0; // a: global
static int b = 47; // b: local to module

void f(void) {
auto int a = b; // a: local to function (auto optional)

// destroyed at end of block
static int c = 11; // c: local to function, not destroyed

}

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Global Variables
12–5

12
-M

od
ul

e_
en

Access to Data (Variables)

Variables have ↪→ 10–1

Scope “Who can access the variable?”

Lifespan “How long is the memory accessible?”

These are determined by their position (pos) and storage class (sc)
pos sc 7→ scope lifespan

local none, auto definition → end of block definition → end of block
static definition → end of block program start → program end

global none unrestricted program start → program end
static whole module program start → program end

int a = 0; // a: global
static int b = 47; // b: local to module

void f(void) {
auto int a = b; // a: local to function (auto optional)

// destroyed at end of block
static int c = 11; // c: local to function, not destroyed

}

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Global Variables
12–5

12
-M

od
ul

e_
en

Acces to Data (Variables) (continued)

Scope and lifespan should be chosen restrictively
Scope as restricted as possible!

prevent unwanted access from other modules (debug)
hide information of implementation (black-box principle, information hiding)

Lifespan as short as possible!

save memory space
especially relevant for µController platforms ↪→ 1–4

Consequence: Avoid global variables!
global variables are visible everywhere

global variables require memory for the entire program execution

Rule: Declaration of variables with minimal scope & lifespan

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Global Variables
12–6

12
-M

od
ul

e_
en

Acces to Data (Variables) (continued)

Scope and lifespan should be chosen restrictively
Scope as restricted as possible!

prevent unwanted access from other modules (debug)
hide information of implementation (black-box principle, information hiding)

Lifespan as short as possible!

save memory space
especially relevant for µController platforms ↪→ 1–4

Consequence: Avoid global variables!
global variables are visible everywhere

global variables require memory for the entire program execution

Rule: Declaration of variables with minimal scope & lifespan

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Global Variables
12–6

12
-M

od
ul

e_
en

Solution: Modularisation

Decomposition of related data & functions into dedicated,
surrounding units ; modules

RS232.c

RS232Init()

RS232Send()

I2CStart()

I2CRec()

GetTemp()

SendToPC()

I2C.c weather.c

sendBuf[]

baud

init
curDev lastTemp

lastWind

main()

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modularisation 12–7

12
-M

od
ul

e_
en

What is a Module?

module := (<set of functions>, <set of data>,
<interface>)

Modules are larger components of programs ↪→ 9–1

problem-oriented aggregation of functions and data
; separation of concerns
enable easy reuse of components
enable simple exchange of components
hide information of implementation: black-box principle
; access only by means of the module’s interface

Module 7→ Abstraction ↪→ 4–1

The interface of a module abstracts
from the actual implementation of the functions
from the internal representation and use of data

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modularisation 12–8

12
-M

od
ul

e_
en

What is a Module?

module := (<set of functions>, <set of data>,
<interface>)

Modules are larger components of programs ↪→ 9–1

problem-oriented aggregation of functions and data
; separation of concerns
enable easy reuse of components
enable simple exchange of components
hide information of implementation: black-box principle
; access only by means of the module’s interface

Module 7→ Abstraction ↪→ 4–1

The interface of a module abstracts
from the actual implementation of the functions
from the internal representation and use of data

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modularisation 12–8

12
-M

od
ul

e_
en

Modules in C [̸=Python]

In C, the modules are not part of the language itself, ↪→ 3–15
instead it is handled solely idiomatically (by using conventions)

module interface 7→ .h-file (contains declarations ↪→ 9–7)
module implementation 7→ .c-file (contains definitions ↪→ 9–3)
module usage 7→ #include <module.h>

extern void Init(uint16_t br); RS232.h: Interface / Contract (public)
Declaration of provided functions
(and data)

extern void Send(char ch);
· · ·

#include <RS232.h> RS232.c: Implementation (not public)
Definition of provided functions
(and data)

Possible module-internal helper
functions and variables (static)

Inclusion of the own interface
ensures that the contract is
adhered to

static uint16_t baud = 2400;
static char sendBuf[16];
· · ·
void Init(uint16_t br) {

· · ·
baud = br;

}
void Send(char ch) {
sendBuf[· · ·] = ch;
· · ·

}

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modules in C 12–9

12
-M

od
ul

e_
en

Modules in C [̸=Python]

In C, the modules are not part of the language itself, ↪→ 3–15
instead it is handled solely idiomatically (by using conventions)

module interface 7→ .h-file (contains declarations ↪→ 9–7)
module implementation 7→ .c-file (contains definitions ↪→ 9–3)
module usage 7→ #include <module.h>

extern void Init(uint16_t br); RS232.h: Interface / Contract (public)
Declaration of provided functions
(and data)

extern void Send(char ch);
· · ·

#include <RS232.h> RS232.c: Implementation (not public)
Definition of provided functions
(and data)

Possible module-internal helper
functions and variables (static)

Inclusion of the own interface
ensures that the contract is
adhered to

static uint16_t baud = 2400;
static char sendBuf[16];
· · ·
void Init(uint16_t br) {

· · ·
baud = br;

}
void Send(char ch) {
sendBuf[· · ·] = ch;
· · ·

}

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modules in C 12–9

12
-M

od
ul

e_
en

Modules in C – Export [̸=Python]

C module exports a set of defined symbols
all functions and global variables
export can be prevented with static (7→ “__” convention in Python)
(7→ restriction of scope ↪→ 12–5)

Export takes place during compilation (.c file −→ .o file)

foo.c Compiler foo.o
a, f

source file (foo.c) object file (foo.o)

uint16_t a; // public
static uint16_t b; // private

void f(void) // public
{ · · · }
static void g(int) // private
{ · · · }

Symbols a and f are exported.

Symbols b and g are declared as static
and, therefore, they are not exported.

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modules in C 12–10

12
-M

od
ul

e_
en

Modules in C – Import

C module imports a set of not-defined symbols
functions and global variables that are used
but not defined in the module itself
during compilation, they are marked as unresolved

source file (bar.c) object file (bar.o)

extern uint16_t a; // declare
extern void f(void); // declare

void main(void) { // public
a = 0x4711; // use
f(); // use

}

Symbol main is exported.
Symbols a and f are unresolved.

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modules in C 12–11

12
-M

od
ul

e_
en

Modules in C – Import (continued) [̸=Python]

The actual resolution is performed by the linker

Compiler
foo.c

Compiler
foo.o

a, f

bar.c bar.o
a, f

Linker
main

bar
main, a, f

Linking is not type safe!
Information about types is not anymore present in the object files

Resolution by the linker takes place exclusively
via names of symbols (identifier)

; type safety has to be ensured during compilation
; uniform declaration with the help of a common header file

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modules in C 12–12

12
-M

od
ul

e_
en

Modules in C – Import (continued) [̸=Python]

The actual resolution is performed by the linker

Compiler
foo.c

Compiler
foo.o

a, f

bar.c bar.o
a, f

Linker
main

bar
main, a, f

Linking is not type safe!
Information about types is not anymore present in the object files

Resolution by the linker takes place exclusively
via names of symbols (identifier)

; type safety has to be ensured during compilation
; uniform declaration with the help of a common header file

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modules in C 12–12

12
-M

od
ul

e_
en

Modules in C – Header [̸=Python]

Elements from other modules have to be declared
functions with the extern declaration ↪→ 9–7

extern void f(void);

global variables with extern

extern uint16_t a;

The keyword extern differen-
tiates between a declaration
and definition of a variable.

Declarations are usually part of the header file,
which module developers make available

interface of the module
exported functions of the module
exported global variables of the module
module-specific constants, types, and macros
usage by including (7→ “import” in Python)

is included by the module itself to
ensure a match of declaration
and definition

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modules in C 12–13

12
-M

od
ul

e_
en

Modules in C – Header (continued) [̸=Python]

module interface: foo.h
// foo.h
#ifndef _FOO_H
#define _FOO_H

// declarations
extern uint16_t a;
extern void f(void);

#endif // _FOO_H

module implementation foo.c

// foo.c
#include <foo.h>

// definitions
uint16_t a;
void f(void) {

· · ·
}

module usage bar.c
(compare for ↪→ 12–11)

// bar.c
extern uint16_t a;
extern void f(void);
#include <foo.h>

void main(void) {
a = 0x4711;
f();

}

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modules in C 12–14

12
-M

od
ul

e_
en

Back to the Example: Weather Station

gcc
(Compiler)
gcc

(Compiler)

RS232.c

I2C.c

weather.c

gcc
(compiler)

RS232.o

I2C.o

weather.o

ld
(linker)

weather

RS232.h

I2C.h

Source modules Object modules ELF binarypreprocess
compile link

Each module consists of a header and one or more implementation
file(s)

.h file defines the interface

.c file implements the interface, includes the .h-file to ensure a match of
declaration and definition

Usage of the module by including the specific .h file

This is similar for libraries

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modules in C 12–15

12
-M

od
ul

e_
en

Back to the Example: Weather Station

gcc
(Compiler)

gcc
(Compiler)

RS232.c

I2C.c

weather.c

gcc
(compiler)

RS232.o

I2C.o

weather.o

ld
(linker)

weather

avr-libc.lib
io.oooooo

RS232.h

I2C.h

io.hh

Source modules Object modules ELF binarypreprocess
compile link

Each module consists of a header and one or more implementation
file(s)

.h file defines the interface

.c file implements the interface, includes the .h-file to ensure a match of
declaration and definition

Usage of the module by including the specific .h file
This is similar for libraries

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Modules in C 12–15

12
-M

od
ul

e_
en

Summary

Principle of separation of concerns ; modularization
reuse and exchange of well-defined components

hiding of implementation details

In C, the concept of modules is not part of the language.
Therefore, it is realized idiomatically by conventions.

module interface 7→ .h-file (contains declarations)

module implementation 7→ .c-file (contains definitions)

use of module 7→ #include <module.h>

private symbols 7→ define as static

The actual combination is done by the linker
resolution exclusively by symbol names
; Linking is not type safe!
type safety has to be ensured during compilation
; with the help of a common header file

© klsw System-Level Programming (ST 25) 12 Program Structure and Modules – Summary 12–16

12
-M

od
ul

e_
en

	12 Program Structure and Modules
	Introduction
	Functional Decomposition
	Global Variables
	Modularisation
	Modules in C
	Summary

