
System-Level Programming

11 Preprocessor

J. Kleinöder, D. Lohmann, V. Sieh, P. Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

11
-P

ra
ep

ro
ze

ss
or

_
en

http://sys.cs.fau.de/lehre/ss25

The C Preprocessor [̸=Python]

Before a C source file is compiled, it is processed by the macro
preprocessor

in the past, a stand-alone program (CPP = C PreProcessor)
nowadays, integrated into compilers

The CPP edits the source code by text transformations
automatic transformation (“clean-up” of the source code)

comments are deleted
lines ending with \ are put together
· · ·

controllable transformations (by the programmer)
preprocessor directives are evaluated and executed
preprocessor macros are expanded

© klsw System-Level Programming (ST 25) 11 Preprocessor – Introduction 11–1

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor Directives [̸=Python]

preprocessor directive := control expression for the preprocessor
#include <file> Inclusion: The contents of file are included at this exact

place into the token stream.

#define macro replacement Definition of macros: Defines a preprocessor macro
macro. In the following token stream, each occurrence of
macro will be replaced by replacement. The replacement
can also be empty.

#if condition,
#elif, #else, #endif

Conditional compilation: Following lines of code are
handed to the compiler or are deleted from the token
stream dependent on condition.

#ifdef macro,
#ifndef macro

Conditional compilation dependent on (defined/not
defined) macro (e. g., with #define).

#error text Abort: The compilation procedure is aborted with the
error message text.

The preprocessor defines an embedded meta language. All prepro-
cessor directives (i.e., the meta program) modify the C program (i.e.,
actual program) prior to actual compilation.

© klsw System-Level Programming (ST 25) 11 Preprocessor – Introduction 11–2

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor Directives [̸=Python]

preprocessor directive := control expression for the preprocessor
#include <file> Inclusion: The contents of file are included at this exact

place into the token stream.

#define macro replacement Definition of macros: Defines a preprocessor macro
macro. In the following token stream, each occurrence of
macro will be replaced by replacement. The replacement
can also be empty.

#if condition,
#elif, #else, #endif

Conditional compilation: Following lines of code are
handed to the compiler or are deleted from the token
stream dependent on condition.

#ifdef macro,
#ifndef macro

Conditional compilation dependent on (defined/not
defined) macro (e. g., with #define).

#error text Abort: The compilation procedure is aborted with the
error message text.

The preprocessor defines an embedded meta language. All prepro-
cessor directives (i.e., the meta program) modify the C program (i.e.,
actual program) prior to actual compilation.

© klsw System-Level Programming (ST 25) 11 Preprocessor – Introduction 11–2

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor Directives [̸=Python]

preprocessor directive := control expression for the preprocessor
#include <file> Inclusion: The contents of file are included at this exact

place into the token stream.

#define macro replacement Definition of macros: Defines a preprocessor macro
macro. In the following token stream, each occurrence of
macro will be replaced by replacement. The replacement
can also be empty.

#if condition,
#elif, #else, #endif

Conditional compilation: Following lines of code are
handed to the compiler or are deleted from the token
stream dependent on condition.

#ifdef macro,
#ifndef macro

Conditional compilation dependent on (defined/not
defined) macro (e. g., with #define).

#error text Abort: The compilation procedure is aborted with the
error message text.

The preprocessor defines an embedded meta language. All prepro-
cessor directives (i.e., the meta program) modify the C program (i.e.,
actual program) prior to actual compilation.

© klsw System-Level Programming (ST 25) 11 Preprocessor – Introduction 11–2

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor Directives [̸=Python]

preprocessor directive := control expression for the preprocessor
#include <file> Inclusion: The contents of file are included at this exact

place into the token stream.

#define macro replacement Definition of macros: Defines a preprocessor macro
macro. In the following token stream, each occurrence of
macro will be replaced by replacement. The replacement
can also be empty.

#if condition,
#elif, #else, #endif

Conditional compilation: Following lines of code are
handed to the compiler or are deleted from the token
stream dependent on condition.

#ifdef macro,
#ifndef macro

Conditional compilation dependent on (defined/not
defined) macro (e. g., with #define).

#error text Abort: The compilation procedure is aborted with the
error message text.

The preprocessor defines an embedded meta language. All prepro-
cessor directives (i.e., the meta program) modify the C program (i.e.,
actual program) prior to actual compilation.

© klsw System-Level Programming (ST 25) 11 Preprocessor – Introduction 11–2

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor Directives [̸=Python]

preprocessor directive := control expression for the preprocessor
#include <file> Inclusion: The contents of file are included at this exact

place into the token stream.

#define macro replacement Definition of macros: Defines a preprocessor macro
macro. In the following token stream, each occurrence of
macro will be replaced by replacement. The replacement
can also be empty.

#if condition,
#elif, #else, #endif

Conditional compilation: Following lines of code are
handed to the compiler or are deleted from the token
stream dependent on condition.

#ifdef macro,
#ifndef macro

Conditional compilation dependent on (defined/not
defined) macro (e. g., with #define).

#error text Abort: The compilation procedure is aborted with the
error message text.

The preprocessor defines an embedded meta language. All prepro-
cessor directives (i.e., the meta program) modify the C program (i.e.,
actual program) prior to actual compilation.

© klsw System-Level Programming (ST 25) 11 Preprocessor – Introduction 11–2

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor – Example [̸=Python]

Simple macro definitions
empty macro (flag) #define USE_7SEG

source-code constant #define NUM_LEDS (4)

Preprocessor directives are
not followed by a semicolon!

“inline” function #define SET_BIT(m, b) (m | (1 << b))

Usage
#if NUM_LEDS < 0 || 8 < NUM_LEDS
error invalid NUM_LEDS // this line is not included
#endif

void enlighten(void) {
uint8_t mask = 0, i;
for (i = 0; i < NUM_LEDS; i++) { // NUM_LEDS --> (4)
mask = SET_BIT(mask, i); // SET_BIT(mask, i) --> (mask | (1 << i))

}
sb_led_setMask(mask); // -->

#ifdef USE_7SEG
sb_show_HexNumber(mask); // -->

#endif

}

© klsw System-Level Programming (ST 25) 11 Preprocessor – Usage 11–3

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor – Example [̸=Python]

Simple macro definitions
empty macro (flag) #define USE_7SEG

source-code constant #define NUM_LEDS (4)

Preprocessor directives are
not followed by a semicolon!

“inline” function #define SET_BIT(m, b) (m | (1 << b))

Usage
#if NUM_LEDS < 0 || 8 < NUM_LEDS
error invalid NUM_LEDS // this line is not included
#endif

void enlighten(void) {
uint8_t mask = 0, i;
for (i = 0; i < NUM_LEDS; i++) { // NUM_LEDS --> (4)
mask = SET_BIT(mask, i); // SET_BIT(mask, i) --> (mask | (1 << i))

}
sb_led_setMask(mask); // -->

#ifdef USE_7SEG
sb_show_HexNumber(mask); // -->

#endif

}

© klsw System-Level Programming (ST 25) 11 Preprocessor – Usage 11–3

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor – Risks [̸=Python]

Function-like macros are indeed no functions!
Parameters are not evaluated, rather they are expanded textually.
Since CPP misses C semantics, expansions can lead to unwanted
surprises.
#define POW2(a) 1 << a
n = POW2(2) * 3

<< has lower precedence than *

; n = 1 << 2 * 3

Some problems can be avoided by the correct use of brackets
#define POW2(a) (1 << a)
n = POW2(2) * 3 ; n = (1 << 2) * 3

However, not all
#define max(a, b) ((a > b) ? a : b)
n = max(x++, 7)

a++ will be potentially evaluated twice

; n = ((x++ > 7) ? x++ : 7)

A possible alternative are real inline functions C99
function’s body is directly inserted ; as efficient as macros
inline int max(int a, int b) {
return (a > b) ? a : b;

}

© klsw System-Level Programming (ST 25) 11 Preprocessor – Risks 11–4

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor – Risks [̸=Python]

Function-like macros are indeed no functions!
Parameters are not evaluated, rather they are expanded textually.
Since CPP misses C semantics, expansions can lead to unwanted
surprises.
#define POW2(a) 1 << a
n = POW2(2) * 3

<< has lower precedence than *

; n = 1 << 2 * 3

Some problems can be avoided by the correct use of brackets
#define POW2(a) (1 << a)
n = POW2(2) * 3 ; n = (1 << 2) * 3

However, not all
#define max(a, b) ((a > b) ? a : b)
n = max(x++, 7)

a++ will be potentially evaluated twice

; n = ((x++ > 7) ? x++ : 7)

A possible alternative are real inline functions C99
function’s body is directly inserted ; as efficient as macros
inline int max(int a, int b) {
return (a > b) ? a : b;

}

© klsw System-Level Programming (ST 25) 11 Preprocessor – Risks 11–4

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor – Risks [̸=Python]

Function-like macros are indeed no functions!
Parameters are not evaluated, rather they are expanded textually.
Since CPP misses C semantics, expansions can lead to unwanted
surprises.
#define POW2(a) 1 << a
n = POW2(2) * 3

<< has lower precedence than *

; n = 1 << 2 * 3

Some problems can be avoided by the correct use of brackets
#define POW2(a) (1 << a)
n = POW2(2) * 3 ; n = (1 << 2) * 3

However, not all
#define max(a, b) ((a > b) ? a : b)
n = max(x++, 7)

a++ will be potentially evaluated twice

; n = ((x++ > 7) ? x++ : 7)

A possible alternative are real inline functions C99
function’s body is directly inserted ; as efficient as macros
inline int max(int a, int b) {
return (a > b) ? a : b;

}

© klsw System-Level Programming (ST 25) 11 Preprocessor – Risks 11–4

11
-P

ra
ep

ro
ze

ss
or

_
en

Preprocessor – Risks [̸=Python]

Function-like macros are indeed no functions!
Parameters are not evaluated, rather they are expanded textually.
Since CPP misses C semantics, expansions can lead to unwanted
surprises.
#define POW2(a) 1 << a
n = POW2(2) * 3

<< has lower precedence than *

; n = 1 << 2 * 3

Some problems can be avoided by the correct use of brackets
#define POW2(a) (1 << a)
n = POW2(2) * 3 ; n = (1 << 2) * 3

However, not all
#define max(a, b) ((a > b) ? a : b)
n = max(x++, 7)

a++ will be potentially evaluated twice

; n = ((x++ > 7) ? x++ : 7)

A possible alternative are real inline functions C99
function’s body is directly inserted ; as efficient as macros
inline int max(int a, int b) {
return (a > b) ? a : b;

}

© klsw System-Level Programming (ST 25) 11 Preprocessor – Risks 11–4

11
-P

ra
ep

ro
ze

ss
or

_
en

	11 Preprocessor
	Introduction
	Usage
	Risks

