
System-Level Programming

7 Operations & Expressions

Peter Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

07
-O

pe
ra

to
re

n_
en

http://sys.cs.fau.de/lehre/ss25

Arithmetic Operators [=Java]

Can be used with all integer and floating-point types
+ addition
− subtraction
⋆ multiplication
/ division
unary − negative sign (e. g., −a) ; multiplication with −1
unary + positive sign (e. g., +3) ; no effect

Additionally only for integer types:

% modulo (remainder of division)

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Arithmetic Operations 7–1

07
-O

pe
ra

to
re

n_
en

Increment/Decrement Operators

Available for integer types and pointers [̸=Python]
++ increment (increase by 1)
−− decrement (decrease by 1)

Left-side operator (prefix) ++x or --x
first, the value of variable x gets changed
then, the (new) value of x is used

Right-side operator (postfix) x++ or x--
first, the (old) value of x is used
then, the value of x gets changed

Examples
a = 10;
b = a++; // b: 10, a: 11
c = ++a; // c: 12, a: 12

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Arithmetic Operations 7–2

07
-O

pe
ra

to
re

n_
en

Comparison Operators [̸=Python]

Comparison of two expressions
< less
<= less or equal
> greater
>= greater or equal
== identical (two equal signs!)
! = unequal

Note: The result is of type int [̸=Python]
Result: false 7→ 0

true 7→ 1
The result can be used for calculations

Examples
if (a >= 3) {· · ·}
if (a == 3) {· · ·}
return a * (a > 0); // return 0 if a is negative

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Relational Operators 7–3

07
-O

pe
ra

to
re

n_
en

Logical Operators [̸=Python]

Combining logical values (true / false), commutative
&& and in Python true && true → true

(conjunction) true && false → false
false && false → false

|| or in Python true || true → true
(disjunction) true || false → true

false || false → false

! not in Python ! true → false
(negation, unary) ! false → true

Note: operands and result are of type int [̸=Python]
Operand
(input parameter):

0 7→ false
̸=0 7→ true

Result: false 7→ 0
true 7→ 1

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Relational Operators 7–4

07
-O

pe
ra

to
re

n_
en

Logical Operators – Evaluation

The evaluation of a logical expression is terminated as soon as the
result is known

Let int a = 5; int b = 3; int c = 7;

a > b︸ ︷︷ ︸
1

|| a > c︸ ︷︷ ︸
?︸ ︷︷ ︸

1

←− will not be evaluated since the
first term already is true

a > c︸ ︷︷ ︸
0

&& a > b︸ ︷︷ ︸
?︸ ︷︷ ︸

0

←− will not be evaluated since the
first term already is false

This short-circuit evaluation can have surprising results if
subexpressions have side effects!

int a = 5; int b = 3; int c = 7;
if (a > c && !func(b)) {· · ·} // func() will not be called

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Relational Operators 7–5

07
-O

pe
ra

to
re

n_
en

Assignment Operators [=Python]

General assignment operator (=)

assigns a value to a variable
example: a = b + 23

Arithmetic assignment operators (+=, −=, . . .)

shortened notation for modifying the value of a variable
example: a += 23 is equivalent to a = a + 23

generally: a op= b is equivalent to a = a op b

for op ∈ { +,−, ⋆, /,%, <<, >>,&, ˆ, | }
Examples

int a = 8;
a += 8; // a: 16
a %= 3; // a: 1

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Assignment Operators 7–6

07
-O

pe
ra

to
re

n_
en

Assignments are Expressions!

Assignments can be nested in more complex expressions
The result of an assignment is the assigned value.

int a, b, c;
a = b = c = 1; // c: 1, b: 1, a: 1

The use of assignments in arbitrary expressions leads to
side effects, which are not always obvious.

a += b += c; // Value of a and b?

Particularly dangerous: use of = instead of ==

In C, logical values are integers: 0 7→ false, /0 7→ true

In Python: syntax error

typical “rookie mistake” of control structures:
if (a = 6) {· · ·} else {· · ·} // BUG: if-branch is always taken!!!

Compiler possibly gives no warning about the construct as it is a
valid expression! ; Programming bug is quite easy to miss!

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Assignment Operators 7–7

07
-O

pe
ra

to
re

n_
en

Assignments are Expressions!

Assignments can be nested in more complex expressions
The result of an assignment is the assigned value.

int a, b, c;
a = b = c = 1; // c: 1, b: 1, a: 1

The use of assignments in arbitrary expressions leads to
side effects, which are not always obvious.

a += b += c; // Value of a and b?

Particularly dangerous: use of = instead of ==

In C, logical values are integers: 0 7→ false, /0 7→ true

In Python: syntax error

typical “rookie mistake” of control structures:
if (a = 6) {· · ·} else {· · ·} // BUG: if-branch is always taken!!!

Compiler possibly gives no warning about the construct as it is a
valid expression! ; Programming bug is quite easy to miss!

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Assignment Operators 7–7

07
-O

pe
ra

to
re

n_
en

Bit Operations [=Java]

Bit-wise operations of integers, commutative
& bit-wise “and” 1& 1 → 1

(bit intersection) 1& 0 → 0
0& 0 → 0

| bit-wise “or” 1 | 1 → 1
(bit unification) 1 | 0 → 1

0 | 0 → 0

∧ bit-wise “exclusive or” 1 ∧ 1 → 0
(bit antivalence) 1 ∧ 0 → 1

0 ∧ 0 → 0

˜ bit-wise inversion ˜ 1 → 0
(one’s complement, unary) ˜ 0 → 1

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–8

07
-O

pe
ra

to
re

n_
en

Bit Operations (continued) [=Java]

Shift operators on integers, not commutative
<< bit-wise left shift (on the right side, 0 bits are “inserted”)
>> bit-wise right shift (on the left side, 0 bits are “inserted”)

Examples (let x be of type uint8_t)

bit# 7 6 5 4 3 2 1 0

x=156 1 0 0 1 1 1 0 0 0x9c

~x 0 1 1 0 0 0 1 1 0x63

7 0 0 0 0 0 1 1 1 0x07

x | 7 1 0 0 1 1 1 1 1 0x9f

x & 7 0 0 0 0 0 1 0 0 0x04

x ^ 7 1 0 0 1 1 0 1 1 0x9B

x << 2 0 1 1 1 0 0 0 0 0x70

x >> 1 0 1 0 0 1 1 1 0 0x4e

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–9

07
-O

pe
ra

to
re

n_
en

Bit Operations (continued) [=Java]

Shift operators on integers, not commutative
<< bit-wise left shift (on the right side, 0 bits are “inserted”)
>> bit-wise right shift (on the left side, 0 bits are “inserted”)

Examples (let x be of type uint8_t)

bit# 7 6 5 4 3 2 1 0

x=156 1 0 0 1 1 1 0 0 0x9c

~x 0 1 1 0 0 0 1 1 0x63

7 0 0 0 0 0 1 1 1 0x07

x | 7 1 0 0 1 1 1 1 1 0x9f

x & 7 0 0 0 0 0 1 0 0 0x04

x ^ 7 1 0 0 1 1 0 1 1 0x9B

x << 2 0 1 1 1 0 0 0 0 0x70

x >> 1 0 1 0 0 1 1 1 0 0x4e

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–9

07
-O

pe
ra

to
re

n_
en

Bit Operations (continued) [=Java]

Shift operators on integers, not commutative
<< bit-wise left shift (on the right side, 0 bits are “inserted”)
>> bit-wise right shift (on the left side, 0 bits are “inserted”)

Examples (let x be of type uint8_t)

bit# 7 6 5 4 3 2 1 0

x=156 1 0 0 1 1 1 0 0 0x9c

~x 0 1 1 0 0 0 1 1 0x63

7 0 0 0 0 0 1 1 1 0x07

x | 7 1 0 0 1 1 1 1 1 0x9f

x & 7 0 0 0 0 0 1 0 0 0x04

x ^ 7 1 0 0 1 1 0 1 1 0x9B

x << 2 0 1 1 1 0 0 0 0 0x70

x >> 1 0 1 0 0 1 1 1 0 0x4e

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–9

07
-O

pe
ra

to
re

n_
en

Bit Operations (continued) [=Java]

Shift operators on integers, not commutative
<< bit-wise left shift (on the right side, 0 bits are “inserted”)
>> bit-wise right shift (on the left side, 0 bits are “inserted”)

Examples (let x be of type uint8_t)

bit# 7 6 5 4 3 2 1 0

x=156 1 0 0 1 1 1 0 0 0x9c

~x 0 1 1 0 0 0 1 1 0x63

7 0 0 0 0 0 1 1 1 0x07

x | 7 1 0 0 1 1 1 1 1 0x9f

x & 7 0 0 0 0 0 1 0 0 0x04

x ^ 7 1 0 0 1 1 0 1 1 0x9B

x << 2 0 1 1 1 0 0 0 0 0x70

x >> 1 0 1 0 0 1 1 1 0 0x4e

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–9

07
-O

pe
ra

to
re

n_
en

Bit Operations (continued) [=Java]

Shift operators on integers, not commutative
<< bit-wise left shift (on the right side, 0 bits are “inserted”)
>> bit-wise right shift (on the left side, 0 bits are “inserted”)

Examples (let x be of type uint8_t)

bit# 7 6 5 4 3 2 1 0

x=156 1 0 0 1 1 1 0 0 0x9c

~x 0 1 1 0 0 0 1 1 0x63

7 0 0 0 0 0 1 1 1 0x07

x | 7 1 0 0 1 1 1 1 1 0x9f

x & 7 0 0 0 0 0 1 0 0 0x04

x ^ 7 1 0 0 1 1 0 1 1 0x9B

x << 2 0 1 1 1 0 0 0 0 0x70

x >> 1 0 1 0 0 1 1 1 0 0x4e

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–9

07
-O

pe
ra

to
re

n_
en

Bit Operations (continued) [=Java]

Shift operators on integers, not commutative
<< bit-wise left shift (on the right side, 0 bits are “inserted”)
>> bit-wise right shift (on the left side, 0 bits are “inserted”)

Examples (let x be of type uint8_t)

bit# 7 6 5 4 3 2 1 0

x=156 1 0 0 1 1 1 0 0 0x9c

~x 0 1 1 0 0 0 1 1 0x63

7 0 0 0 0 0 1 1 1 0x07

x | 7 1 0 0 1 1 1 1 1 0x9f

x & 7 0 0 0 0 0 1 0 0 0x04

x ^ 7 1 0 0 1 1 0 1 1 0x9B

x << 2 0 1 1 1 0 0 0 0 0x70

x >> 1 0 1 0 0 1 1 1 0 0x4e

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–9

07
-O

pe
ra

to
re

n_
en

Bit Operations (continued) [=Java]

Shift operators on integers, not commutative
<< bit-wise left shift (on the right side, 0 bits are “inserted”)
>> bit-wise right shift (on the left side, 0 bits are “inserted”)

Examples (let x be of type uint8_t)

bit# 7 6 5 4 3 2 1 0

x=156 1 0 0 1 1 1 0 0 0x9c

~x 0 1 1 0 0 0 1 1 0x63

7 0 0 0 0 0 1 1 1 0x07

x | 7 1 0 0 1 1 1 1 1 0x9f

x & 7 0 0 0 0 0 1 0 0 0x04

x ^ 7 1 0 0 1 1 0 1 1 0x9B

x << 2 0 1 1 1 0 0 0 0 0x70

x >> 1 0 1 0 0 1 1 1 0 0x4e

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–9

07
-O

pe
ra

to
re

n_
en

Bit Operations – Usage

By combining these operations, single bits are set/unset.

bit# 7 6 5 4 3 2 1 0

PORTD ? ? ? ? ? ? ? ? Bit 7 shall be changed without altering
other bits!

0x80 1 0 0 0 0 0 0 0 One bit gets set by or-operation with a
mask that only contains a 1 bit at the
desired positionPORTD |= 0x80 1 ? ? ? ? ? ? ?

~0x80 0 1 1 1 1 1 1 1 One bit gets unset (set to 0) by
and-operation with a mask that only
contains a 0 bit at the desired position.PORTD &= ~0x80 0 ? ? ? ? ? ? ?

0x08 0 0 0 0 1 0 0 0 Inversion of one bit by xor-operation
with a mask that only contains a 1 bit
at the desired position.PORTD ^= 0x08 ? ? ? ? ¿ ? ? ?

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–10

07
-O

pe
ra

to
re

n_
en

Bit Operations – Usage

By combining these operations, single bits are set/unset.

bit# 7 6 5 4 3 2 1 0

PORTD ? ? ? ? ? ? ? ? Bit 7 shall be changed without altering
other bits!

0x80 1 0 0 0 0 0 0 0 One bit gets set by or-operation with a
mask that only contains a 1 bit at the
desired positionPORTD |= 0x80 1 ? ? ? ? ? ? ?

~0x80 0 1 1 1 1 1 1 1 One bit gets unset (set to 0) by
and-operation with a mask that only
contains a 0 bit at the desired position.PORTD &= ~0x80 0 ? ? ? ? ? ? ?

0x08 0 0 0 0 1 0 0 0 Inversion of one bit by xor-operation
with a mask that only contains a 1 bit
at the desired position.PORTD ^= 0x08 ? ? ? ? ¿ ? ? ?

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–10

07
-O

pe
ra

to
re

n_
en

Bit Operations – Usage

By combining these operations, single bits are set/unset.

bit# 7 6 5 4 3 2 1 0

PORTD ? ? ? ? ? ? ? ? Bit 7 shall be changed without altering
other bits!

0x80 1 0 0 0 0 0 0 0 One bit gets set by or-operation with a
mask that only contains a 1 bit at the
desired positionPORTD |= 0x80 1 ? ? ? ? ? ? ?

~0x80 0 1 1 1 1 1 1 1 One bit gets unset (set to 0) by
and-operation with a mask that only
contains a 0 bit at the desired position.PORTD &= ~0x80 0 ? ? ? ? ? ? ?

0x08 0 0 0 0 1 0 0 0 Inversion of one bit by xor-operation
with a mask that only contains a 1 bit
at the desired position.PORTD ^= 0x08 ? ? ? ? ¿ ? ? ?

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–10

07
-O

pe
ra

to
re

n_
en

Bit Operations – Usage

By combining these operations, single bits are set/unset.

bit# 7 6 5 4 3 2 1 0

PORTD ? ? ? ? ? ? ? ? Bit 7 shall be changed without altering
other bits!

0x80 1 0 0 0 0 0 0 0 One bit gets set by or-operation with a
mask that only contains a 1 bit at the
desired positionPORTD |= 0x80 1 ? ? ? ? ? ? ?

~0x80 0 1 1 1 1 1 1 1 One bit gets unset (set to 0) by
and-operation with a mask that only
contains a 0 bit at the desired position.PORTD &= ~0x80 0 ? ? ? ? ? ? ?

0x08 0 0 0 0 1 0 0 0 Inversion of one bit by xor-operation
with a mask that only contains a 1 bit
at the desired position.PORTD ^= 0x08 ? ? ? ? ¿ ? ? ?

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–10

07
-O

pe
ra

to
re

n_
en

Bit Operations – Usage (continued)

Bit masks are usually given as hexadecimal literals.
bit# 7 6 5 4 3 2 1 0

0x8f 1 0 0 0︸ ︷︷ ︸
8

1 1 1 1︸ ︷︷ ︸
f

hex digit represents half byte: nibble

For “thinkers in decimals”, the left-shift notation is more suitable

PORTD |= (1<<7); // set bit 7: 1<<7 --> 10000000
PORTD &= ~(1<<7); // mask bit 7: ~(1<<7) --> 01111111

Combined with the or-operation, shifting ones works for complex
masks
#include <led.h>
void main(void) {
uint8_t mask = (1<<RED0) | (1<<RED1);

sb_led_setMask (mask); ;
0

R0

1

Y0

2

G0

3

B0

4

R1

5

Y1

6

G1

7

B1
while(1) ;

}

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–11

07
-O

pe
ra

to
re

n_
en

Bit Operations – Usage (continued)

Bit masks are usually given as hexadecimal literals.
bit# 7 6 5 4 3 2 1 0

0x8f 1 0 0 0︸ ︷︷ ︸
8

1 1 1 1︸ ︷︷ ︸
f

hex digit represents half byte: nibble

For “thinkers in decimals”, the left-shift notation is more suitable

PORTD |= (1<<7); // set bit 7: 1<<7 --> 10000000
PORTD &= ~(1<<7); // mask bit 7: ~(1<<7) --> 01111111

Combined with the or-operation, shifting ones works for complex
masks
#include <led.h>
void main(void) {
uint8_t mask = (1<<RED0) | (1<<RED1);

sb_led_setMask (mask); ;
0

R0

1

Y0

2

G0

3

B0

4

R1

5

Y1

6

G1

7

B1
while(1) ;

}

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–11

07
-O

pe
ra

to
re

n_
en

Bit Operations – Usage (continued)

Bit masks are usually given as hexadecimal literals.
bit# 7 6 5 4 3 2 1 0

0x8f 1 0 0 0︸ ︷︷ ︸
8

1 1 1 1︸ ︷︷ ︸
f

hex digit represents half byte: nibble

For “thinkers in decimals”, the left-shift notation is more suitable

PORTD |= (1<<7); // set bit 7: 1<<7 --> 10000000
PORTD &= ~(1<<7); // mask bit 7: ~(1<<7) --> 01111111

Combined with the or-operation, shifting ones works for complex
masks
#include <led.h>
void main(void) {
uint8_t mask = (1<<RED0) | (1<<RED1);

sb_led_setMask (mask); ;
0

R0

1

Y0

2

G0

3

B0

4

R1

5

Y1

6

G1

7

B1
while(1) ;

}

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Bit Operations 7–11

07
-O

pe
ra

to
re

n_
en

Conditional Evaluation [≈Python]

Formulation of conditions in expressions
expression1 ? expression2 : expression3

first, expression1 gets evaluated
expression1 ̸= 0 (true) ; expression2 is the result
expression1 = 0 (false) ; expression3 is the result

?: is the only ternary (three-part) operator in C

Example C

int abs(int a) {
// if (a<0) return -a; else return a;
return (a<0) ? -a : a;

}

Python

value_if_true if condition else value_if_false

more readable, but longer

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – More Operators 7–12

07
-O

pe
ra

to
re

n_
en

Sequence Operator [̸=Python]

Sequencing of expressions
expression1 , expression2

first, expression1 gets evaluated
; side effects of expression1 are visible for expression2
the value of expression2 is the result

Use of the comma operator is often not required!
(C-preprocessor macros with side effects)

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – More Operators 7–13

07
-O

pe
ra

to
re

n_
en

Associativity Rules of Operators [≈Java]

class operators associativity

1 function call, array access
structure access
post-increment/-decrement

x() x[]
x.y x->y
x++ x--

left → right

2 pre-increment/-decrement
unary operators
address, pointer
type conversion (cast)
type size

++x --x
+x -x ~x !x
& *
(<Typ>)x
sizeof(x)

right → left

3 multiplication, division, modulo * / % left → right

4 addition, subtraction + - left → right

5 bit-wise shifts >> << left → right

6 relational operators < <= > >= left → right

7 equality operators == != left → right

8 bit-wise AND & left → right

9 bit-wise OR | left → right

10 bit-wise XOR ^ left → right

11 conjunction && left → right

12 disjunction || left → right

13 conditional evaluation ?:= right → left

14 assignment = op= right → left

15 sequence , left → right

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Expressions 7–14

07
-O

pe
ra

to
re

n_
en

Type Promotion in Expressions

Operations are calculated at least with int-width
short- and signed char-operands are “promoted” implicitly
(↪→ Integer Promotion)
Only the result will then be promoted/cut off to match the target type

int8_t a=100, b=3, c=4, res; // range: -128 --> +127

res︸︷︷︸
int8_t: 75

= a︸︷︷︸
int: 100

* b︸︷︷︸
int: 3︸ ︷︷ ︸

int: 300

/ c︸︷︷︸
int: 4

;

︸ ︷︷ ︸
int: 75

// promotion to int: 300 fits in!

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Expressions 7–15

07
-O

pe
ra

to
re

n_
en

Type Promotion in Expressions (continued)

In general, the largest involved width is used

int8_t a=100, b=3, res; // range: -128 --> +127
int32_t c=4; // range: -2147483648 --> +2147483647

res︸︷︷︸
int8_t: 75

= a︸︷︷︸
int: 100

* b︸︷︷︸
int: 3︸ ︷︷ ︸

int: 300︸ ︷︷ ︸
int32_t: 300

/ c;

︸ ︷︷ ︸
int32_t: 75

// promotion to int32_t

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Expressions 7–16

07
-O

pe
ra

to
re

n_
en

Type Casting in Expressions (continued)

Floating-point types are considered to be “larger” than integer types

All floating point operations are at least calculated with double

width

int8_t a=100, b=3, res; // range: -128 --> +127

res︸︷︷︸
int8_t: 75

= a︸︷︷︸
int: 100

* b︸︷︷︸
int: 3︸ ︷︷ ︸

int: 300︸ ︷︷ ︸
double: 300.0

/ 4.0f︸︷︷︸
double 4.0

;

︸ ︷︷ ︸
double: 75.0

// promotion to double

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Expressions 7–17

07
-O

pe
ra

to
re

n_
en

Type Promotion in Expressions (continued)

unsigned types are also considered “larger” than signed types

int s = -1, res; // range: -32768 --> +32767
unsigned u = 1; // range: 0 --> 65535

res︸︷︷︸
int: 0

= s︸︷︷︸
unsigned: 65535

< u;

︸ ︷︷ ︸
unsigned: 0

// promotion to unsigned: -1 --> 65535

; Surprising results when using negative values!
; Avoid mixing signed and unsigned operands!

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Expressions 7–18

07
-O

pe
ra

to
re

n_
en

Type Casting in Expressions – Type Casts

By using the type cast operator, an expression is converted into a
target type.

Casting is explicit type promotion.

(type) expression

int s = -1, res; // range: -32768 --> +32767
unsigned u = 1; // range: 0 --> 65535

res︸︷︷︸
int: 1

= s < (int) u︸ ︷︷ ︸
int: 1

;

︸ ︷︷ ︸
int: 1

// cast u to int

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Expressions 7–19

07
-O

pe
ra

to
re

n_
en

References

© klsw System-Level Programming (ST 25) 7 Operations & Expressions – Expressions 7–20

07
-O

pe
ra

to
re

n_
en

	7 Operations & Expressions
	Arithmetic Operations
	Relational Operators
	Assignment Operators
	Bit Operations
	More Operators
	Expressions

