03-Java-vs-C_en

O

System-Level Programming

3 Java/Python vs. C — Some Examples

Peter Wagemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

en

03-Java-vs-C

The First C Program

B The most famous program of the world in C
#include <stdio.h>

int main(int argc, char **xargv) {
/* greet user x*/
printf("Hello World!\n");
return 0;

}

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output

3-1

The First C Program

The most famous program of the world in C

#include <stdio.h>

int main(int argc, char **xargv) {

/* greet user x*/
printf("Hello World!\n");
return 0;

}

Compilation and execution (on a UNIX system)

~> gcc -0 hello hello.c
~> ./hello
Hello World!

~>

Not that com-
plicated at all

-)

© klsw System-Level Programming (ST 25)

3 Java/Python vs. C — Output

3-1

en

03-Java-vs-C

The First C Program — a Comparison to Java

B The most famous program of the world in C
#include <stdio.h>

int main(int argc, char **xargv) {
/* greet user x*/
printf("Hello World!\n");
return 0;

}

m The most famous program of the world in Java

import java.lang.System;
class Hello {
public static void main(String[] args) {
/* greet user x/
System.out.println("Hello World!");
return;
}
h

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output

3-2

en

03-Java-vs-C

The First C Program — a Comparison to Java

B The most famous program of the world in C

#include <stdio.h> C: A C program starts with
main(), a global function of type
int main(int argc, char *xargv) { int, which is defined in exactly
/* greet user x/ one file.
printf("Hello World!\n");
return 0;
}

m The most famous program of the world in Java

import java.lang.System; Java: Each Java program starts

class Hello { with the function main(), a static
public static void main(String[] args) { Method of type void, which is
/% greet user x/ defined in exactly one class.
System.out.println("Hello World!");
return;
}
}

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Output 3-2

The First C Program — a Comparison to Java

B The most famous program of the world in C

#include <stdio.h> C: <no counterpart>
int main(int argc, char **xargv) {

/* greet user x*/

printf("Hello World!\n");

return 0;

}

m The most famous program of the world in Java

import java.lang.System; Java: Each Java program consists
GIEES Hello.{ : : of at least one class.
public static void main(String[] args) {
/* greet user x/

System.out.println("Hello World!");
return;
}
}

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output 3-2

en

03-Java-vs-C

The First C Program — a Comparison to Java

B The most famous program of the world in C

#include <stdio.h> C: The output of the string ta-
kes place due to the function
int main(int argc, char **xargv) { printf(). (\n ~ new line)

/* greet user x*/
printf("Hello World!\n");
return 0;

}

m The most famous program of the world in Java

import java.lang.System: Java: The output of one string

class Hello { takes place in the method
public static void main(String[] args) { Println() from the class out
/% greet user */ which is from the package
System.out.println("Hello World!"); System.
return;
}
¥

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Output 3-2

en

03-Java-vs-C

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Output 3-2

The First C Program — a Comparison to Java

The most famous program of the world in C

C: To use the function printf(),
the library stdio.h is included
int main(int argc, char **xargv) { by the preprocessor instruction

/* greet user x/ #include

printf("Hello World!\n");

return 0;

}

#include <stdio.h>

The most famous program of the world in Java

import java.lang.System; Java: To use the class out, the
class Hello { package System is included by
public static void main(String[] args) { the import instruction.
/* greet user x/
System.out.println("Hello World!");
return;
}
}

The First C Program — a Comparison to Java

The most famous program of the world in C
#include <stdio.h> C: Return to the operating system
with return value. 0 in this case
indicates that no error has happe-
ned.

int main(int argc, char **xargv) {
/* greet user x*/
printf("Hello World!\n");
return 0;

}

The most famous program of the world in Java

import java.lang.System; Java: Return to the operating
class Hello { system.
public static void main(String[] args) {
/* greet user x/

System.out.println("Hello World!");
return;

}
}

© klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output 3-2

03-Java-vs-C_en

A Comparison to Hello World in Python

B The most famous program of the world in Python

print(’Hello World’)

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output

3-3

A Comparison to Hello World in Python

B The most famous program of the world in Python

print(’'Hello World')

m Python

m Usually execution in interpreter

= High-level abstraction level

= Numerous built-in functions

= No explicit include directive required for built-in function
E C

Native execution on machine

No interpreter required

Machine orientation

Explicit include statements for used functions

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output 3-3

03-Java-vs-C_en

The First C Program for a pController

Preliminary information:

Port A

LT

1 2 3 4 5 6 7
DDRA PINA PORTA
<> 0]
> 1
DDRD DDRB
<« 2l
“«——>3 i E
PortD PIND Micro PINB
«u controller 4
<> 5
PORTD PORTB]
<«—>6 6
<« 7
DDRC PINC PORTC
0 1 2 4 5 6 7

Port C

Port B

DDRx: data
direction register

PINx: port input
register
PORTx: port
output register

(of size 8 bit each)

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Output 3-4

en

03-Java-vs-C

The First C Program for a pController

Background information:

Port A
o 1 2 3 4
DDRA PINA
<«
<«
DDRD
>R
“«—f i
— Port D PIND Micro
< <« controller
<«
PORTD]
6
<«
DDRC PINC
0 1 2 3 4
Port C

m LED is not lit:
= DDRD bit 6: '1" (output)
m PORTD bit 6: '1" (5V)
m LED lights up:

= DDRD bit 6: '1" (output)
= PORTD bit 6: '0' (OV)

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Output

3-5

03-Java-vs-C_en

The First C Program for a pController

B “Hello world” for AVR ATmega (SPiCboard)

#include <avr/io.h>

void main(void) {
/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1<<6); /* PD6 is used as output x*/
PORTD |= (1<<6); /* PD6: high --> LED is off x*/

/* greet user x/
PORTD &= ~(1<<6); /* PD6: low --> LED is on =/

/* wait forever x/
while (1) {
}

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output

The First C Program for a pController

B “Hello world” for AVR ATmega (SPiCboard)

#include <avr/io.h>

void main(void) {
/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1<<6); /* PD6 is used as output x*/
PORTD |= (1<<6); /* PD6: high --> LED is off x*/

/* greet user x/
PORTD &= ~(1<<6); /* PD6: low --> LED is on =/

/* wait forever x/
while (1) {

m Compilation and flashing (with SPiC-IDE) ~» Exercises

03-Java-vs-C_en

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output 3-6

03-Java-vs-C_en

The First C Program for a pController

B “Hello world” for AVR ATmega (SPiCboard)

#include <avr/io.h>

void main(void) {
/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1<<6); /* PD6 is used as output x*/
PORTD |= (1<<6); /* PD6: high --> LED is off x*/

/* greet user x/
PORTD &= ~(1<<6); /* PD6: low --> LED is on =/

/* wait forever x/

while (1) {
}
m Compilation and flashing (with SPiC-IDE) ~» Exercises
m Execution (SPiCboard): @ (red LED lit)

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output 3-6

03-Java-vs-C_en

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output 3-6

The First C Program for a pController

“Hello world” for AVR ATmega (SPiCboard)

#include <avr/io.h>

void main(void) {
/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1<<6); /* PD6 is used as output x*/
PORTD |= (1<<6); /* PD6: high --> LED is off x*/

/* greet user x/
PORTD &= ~(1<<6); /* PD6: low --> LED is on =/

/* wait forever x/

while (1) { pController programming is
} i “somewhat different”.
Compilation and flashing (with SPiC-IDE) ~» Exercises
Execution (SPiCboard): @ (red LED lit)

The First C Program for a pController

m “Hello world” for AVR ATmega (compare < [3-3])
#include <avr/io.h>

void main(void) {
/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1<<6); /* PD6 is used as output x*/
PORTD |= (1<<6); /* PD6: high --> LED is off x*/

/* greet user */
PORTD &= ~(1<<6); /* PD6: low --> LED is on x*/

/* wait forever x/
while (1) {
¥

}
The main()-function has no return value (type

void). A pController program runs indefinitely ~
main() does not terminate.

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output 3-7

en

03-Java-vs-C

The First C Program for a pController

m “Hello world” for AVR ATmega (compare < [3-3])

#include <avr/io.h>

void main(void) {
/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1<<6); /* PD6 is used as output x*/
PORTD |= (1<<6); /* PD6: high --> LED is off x*/

/* greet user */
PORTD &= ~(1<<6); /* PD6: low --> LED is on x*/

/* wait forever x/
while (1) {
¥

}
There will be no return to an operating system

(which one?). The endless loop assures that main()
does not terminate.

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Output

3-7

The First C Program for a pController

m “Hello world” for AVR ATmega (compare < [3-3])

#include <avr/io.h>

void main(void) {
/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1<<6); /* PD6 is used as output */
PORTD |= (1<<6); /* PD6: high --> LED is off x/

/* greet user */
PORTD &= ~(1<<6); /* PD6: low --> LED is on x*/

/* wait forever x/
while (1) {
¥

}
5 First, the hardware is initialized (i.e., put in a prede-

fined state). For this, single bits in certain hardware
registers have to be changed.

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Output 3-7

The First C Program for a pController

m “Hello world” for AVR ATmega (compare < [3-3])

#include <avr/io.h>

void main(void) {
/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1<<6); /* PD6 is used as output */
PORTD |= (1<<6), /* PD6: high --> LED is off x/

/* greet user */
PORTD &= ~(1<<6); /* PD6: low --> LED is on */

/* wait forever x/
while (1) {
¥

}
The interaction with the environment (in this case:

switching on the LED) takes place by manipulating
single bits in hardware registers.

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Output

er

03-Java-vs-C

The First C Program for a pController

m “Hello world” for AVR ATmega (compare < [3-3])

#include <avr/io.h>

void main(void) {
/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1<<6); /* PD6 is used as output */
PORTD |= (1<<6), /* PD6: high --> LED is off x/

/* greet user */
PORTD &= ~(1<<6); /* PD6: low --> LED is on x*/

/* wait forever x/
while (1) {
¥

}
To access the hardware registers (DDRD, PORTD, pro-

vided as global variables), the library avr/io.h is
included with #include.

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Output

en

03-Java-vs-C

The Second C Program — Input with Linux

B user interaction (reading one character) with Linux:

#include <stdio.h>

int main(int argc, char *xargv) {
printf("Press key: ");
char key = getchar();

printf("You pressed %c\n", key);
return 0;

}

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Input

3-Java-vs-C_en

The Second C Program — Input with Linux

B user interaction (reading one character) with Linux:
#include <stdio.h>

int main(int argc, char xxargv) {
printf("Press key: ");
char key = getchar();

printf("You pressed %c\n", key);
return 0;

}

The getchar()-function reads one charac-
ter from the standard input (here: keyboard).
The function "waits”, if necessary, until a cha-
racter is available.

O © klsw System-Level Programming (ST 25)

3 Java/Python vs. C — Input

en

03-Java-vs-C

The Second C Program for a pController

Preliminary information:
Port A

11

0 1 2 3 4 . -
oora pna| M Initialising:
BN = DDRD bit 2: '0’
PEEEN | +5V (input)
1L porel 1 | = PORTD bit 2: "1’
PortD | PIND '?ﬁfﬂﬁ' (pull-up switched on)
N D resistor . .
ov L m Detection:
DEEN Sl = PIND bit 2: '1'
X => button not pressed
DDRC PINC = PIND bit 2: "0’
i T i j j => button pressed
Port C

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Input 3-10

03-Java-vs-C_en

The Second C Program — Input with pController

m User interaction (waiting for a button to be pressed) on the
SPiCboard:

#include <avr/io.h>

void main(void) {
/* initialize hardware: button on port D pin 2 x/
DDRD &= ~(1 << 2); /* PD2 is used as input */
PORTD |= (1 << 2); /* activate pull-up: PD2: high */

/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1 << 6); /* PD6 is used as output */
PORTD |= (1 << 6); /* PD6: high --> LED is off x/

/* wait until PD2 -> low (button is pressed) */
while ((PIND >> 2) & 1) {
}

/* greet user x/
PORTD &= ~(1 << 6); /* PD6: low --> LED is on x/

/* wait forever x/
while (1) {
}

O-
© klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Input 3-11

The Second C Program — Input with pController

m User interaction (waiting for a button to be pressed) on the
SPiCboard:

#include <avr/io.h>

void main(void) {
/* initialize hardware: button on port D pin 2 x/
DDRD &= ~(1 << 2); /* PD2 is used as input x*/
PORTD |= (1 << 2); /* activate pull-up: PD2: high */

/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1 << 6); /* PD6 is used as output */
PORTD |= (1 << 6); /* PD6: high --> LED is off x/

/* wait until PD2 -> low (button is pressed) */

V}mile ((PIND >>2) & 1) { Just like the LED, the button
is connected to a digital 10
/* greet user x/ pin of the pController. We

en

03-Java-vs-C

PORTD &= ~(1 << 6); /* PD6: low --> LED is on x/ now configure pin 2 at port
D as an input by clearing

/*_wait forever */ the corresponding bits in the
\;hlle (1) { register DDRD.

© klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Input 3-11

03-Java-vs-C_en

The Second C Program — Input with pController

m User interaction (waiting for a button to be pressed) on the
SPiCboard:

#include <avr/io.h>

void main(void) {
/* initialize hardware: button on port D pin 2 x/
DDRD &= ~(1 << 2); /* PD2 is used as input */
PORTD |= (1 << 2); /* activate pull-up: PD2: high */

/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1 << 6); /* PD6 is used as output */
PORTD |= (1 << 6); /* PD6: high --> LED is off x/

/* wait until PD2 -> low (button is pressed) */

sl (P 22 20 &) ol By setting bit 2 in the regis-

¥ ter PORTD as 1, the internal

/* greet user */ pull-up resistor (high resi-

PORTD &= ~(1 << 6); /* PD6: low --> LED is on x*/ stance) is activated. Which is
connected to Ve ~ PD2 =

/* wait forever x/ high

while (1) {

}

O-
© klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Input 3-11

en

03-Java-vs-C

The Second C Program — Input with pController

m User interaction (waiting for a button to be pressed) on the

O

SPiCboard:

#include <avr/io.h>

void main(void) {
/* initialize hardware: button on port D pin 2 x/
DDRD &= ~(1 << 2); /* PD2 is used as input */
PORTD |= (1 << 2); /* activate pull-up: PD2: high */

/* initialize hardware: LED on port D pin 6, active low */
DDRD |= (1 << 6); /* PD6 is used as output */
PORTD |= (1 << 6); /* PD6: high --> LED is off x/

/* wait until PD2 -> low (button is pressed) */
while ((PIND >> 2) & 1) {

¥ button to be pressed, i.e.,
/% greet user %/ while PD2 (bit 2 in the regis-

PORTD &= ~(1 << 6); /* PD6: low --> LED is on =/ ter PIND) is high. When the
button is pressed, PD2 is pul-

Active waiting: waits for a

/*_wait forever */ led to ground ~ bit 2 in the
while (1) { register PIND is now fow and
¥ the loop is exited

}

© klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Input 3-11

en

03-Java-vs-C

As a Reference: User Interaction as a Java-Program

import java.lang.System; Input as a “typical” Java

import javax.swing.x; program (object-oriented,
import java.awt.event.x; .
graphic)

public class Input implements ActionListener {
private JFrame frame;

public static void main(String[] args) {
// create input, frame and button objects
Input input = new Input();
input.frame = new JFrame("Java Program");
JButton button = new JButton("Press me");

// add button to frame
input.frame.add(button);
input.frame.setSize (400, 400);
input.frame.setVisible(true);

// register input as listener of button events
button.addActionListener(input);

}

public void actionPerformed(ActionEvent e) {
System.out.println("Button pressed!");
System.exit(0);

}
}

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Input 3-12

As a Reference: User Interaction as a Java-Program

import java.lang.System; Input as a “typical” Java

import javax.swing.*; : A

import java.awt.event.x*; progra_m (ObJeCt oriented,
graphic)

public class Input implements ActionListener {
private JFrame frame;

public static void main(String[] args) {
// create input, frame and button objects
Input input = new Input();
input.frame = new JFrame("Java Program");
JButton button = new JButton("Press me");

// add button to frame
input.frame.add(button);
input.frame.setSize (400, 400);
input.frame.setVisible(true);

The class Input implements an
interface to receive interaction
events.

// register input as listener of button events
button.addActionListener(input);

}

public void actionPerformed(ActionEvent e) {
System.out.println("Button pressed!");
System.exit(0);
}
}

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Input 3-12

As a Reference: User Interaction as a Java-Program

import java.lang.System; Input as a “typical” Java

import javax.swing.*; : A

import java.awt.event.x*; progra_m (ObJeCt oriented,
graphic)

public class Input implements ActionListener {
private JFrame frame;

public static void main(String[] args) {
// create input, frame and button objects
Input input = new Input();
input.frame = new JFrame("Java Program");
JButton button = new JButton("Press me");

// add button to frame
input.frame.add(button);
input.frame.setSize (400, 400);
input.frame.setVisible(true);

The program behaviour is imple-
mented with the help of a multi-

tude of objects (frame, button,

// register input as listener of button events input), which are created during
button.addActionListener(input); initialization
} .

public void actionPerformed(ActionEvent e) {
System.out.println("Button pressed!");
System.exit(0);
}
}

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Input 3-12

As a Reference: User Interaction as a Java-Program

import java.lang.System; Input as a “typical” Java

import javax.swing.*; : A

import java.awt.event.x*; progra_m (ObJeCt oriented,
graphic)

public class Input implements ActionListener {
private JFrame frame;

public static void main(String[] args) {
// create input, frame and button objects
Input input = new Input();
input.frame = new JFrame("Java Program");
JButton button = new JButton("Press me");

// add button to frame
input.frame.add(button);
input.frame.setSize (400, 400);
input.frame.setVisible(true);

The created button-object sends
a message to the input-object.

// register input as listener of button events
button.addActionListener(input);
}

public void actionPerformed(ActionEvent e) {
System.out.println("Button pressed!");
System.exit(0);
}
}

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Input 3-12

As a Reference: User Interaction as a Java-Program

import java.lang.System; Input as a “typical” Java

import javax.swing.*; : A

import java.awt.event.x*; progra_m (ObJeCt oriented,
graphic)

public class Input implements ActionListener {
private JFrame frame;

public static void main(String[] args) {
// create input, frame and button objects
Input input = new Input();
input.frame = new JFrame("Java Program");
JButton button = new JButton("Press me");

// add button to frame
input.frame.add(button);
input.frame.setSize (400, 400);
input.frame.setVisible(true);

The button press is signaled by
an actionPerformed()-message
(method call)

// register input as listener of button events
button.addActionListener(input);

}

public void actionPerformed(ActionEvent e) {
System.out.println("Button pressed!");
System.exit(0);
}
}

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — Input 3-12

er

03-Java-vs-C

User Interaction as a Java-Program — Explanations [Handout]

B The program cannot be compared to its counterpart in C directly.
m |t uses the (already known to you) object-oriented paradigm, which is

typical for Java.
m This difference shall be emphasised here.

B User interaction in Java explained line by line
The button press is signaled by an actionPerformed()-message (method
call).

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C - Input 3-13

03-Java-vs-C_en

1%t Takeaway: Java/Python — C (Syntax)

m Java/Python and C have similar syntax
(Syntax: “What do valid programs of the language look like?")

B C syntax was used as a reference for the development of

Java/Python
~» many language elements are similar or identical

m blocks, loops, conditions, statements, literals
= these elements will be looked at in detail in the following chapters

B Major elements from Java/Python are not present in C

m classes, packages, objects, exceptions, ...

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — First Conclusion

3-14

03-Java-vs-C_en

1t Takeaway: Java/Python — C (ldiomatic)

B There are major idiomatic differences

(Idiomatic: “What do programs of the language usually look like?")

m Java: object-oriented paradigm

Central question: From which things is a problem made of?
Segmentation of the problem in classes and objects
Hierarchy by inheritance and aggregation

Program flow by interaction between objects

Re-usability through extensive class libraries

m C: imperative paradigm

Central question: From which steps is the problem made up?
Segmentation of the problem in functions and variables
Hierarchy by breakdown into functions

Program flow through calls between functions

Re-usability through function libraries

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — First Conclusion

3-15

1t Takeaway: Java/Python — C (Philosophy)

® There are philosophical differences as well
(Philosophy: “Basic ideas and concepts of a language”)

m Java: Security and portability due to abstracting from machine
= Compilation for virtual machines (JVM)
m Extensive checks for programming errors during runtime
- range overflow, division by 0, ...
Problem-centric memory model
- Only type-safe memory accesses, automatic garbage collection during
runtime.

m C: efficiency and lightweight due to machine orientation
Compilation for concrete hardware architecture

No checks for programming errors during runtime

- some error are caught by the operating system — if present
Memory model directly maps to the machine

— pointers provide direct memory access

- coarse-grained access protection and automatic garbage collection
O (at processor level) by an OS — if present

03-Java-vs-C_en

© klsw System-Level Programming (ST 25) 3 Java/Python vs. C — First Conclusion 3-16

03-Java-vs-C_en

A First Takeaway: pController Programming

C — machine orientation +— pC programming

The machine orientation of the language C especially
shows when looking at pController programming!

m Only one program is running
s On RESET the program is loaded directly from flash memory
= Hardware has to be initialized by the program first

= Shall never terminate (e. g., with the help of a infinite loop in main())

m The solution is implemented close to the machine
= Direct manipulation of single bits in hardware registers

m Therefore detailed knowledge of electrical wiring is needed
= No support of an operating system (like Linux)

m Usually a low level of abstraction ~ error-prone... but fast

O © klsw System-Level Programming (ST 25) 3 Java/Python vs. C — First Conclusion 3-17

03-Java-vs-C_en

A First Takeaway: pController Programming

C — machine orientation +— pC programming

The machine orientation of the language C especially
shows when looking at pController programming!

Only one program is running
s On RESET the program is loaded directly from flash memory

= Hardware has to be initialized by the program first

= Shall never terminate (e. g., with the help of a infinite loop in main())
The solution is implemented close to the machine

= Direct manipulation of single bits in hardware registers

m Therefore detailed knowledge of electrical wiring is needed

= No support of an operating system (like Linux)

m Usually a low level of abstraction ~ error-prone... but fast

Approach: Higher abstraction with problem-oriented libraries

© klsw System-Level Programming (ST 25) 3 Java/Python vs. C — First Conclusion 3-17

	3 Java/Python vs. C
	Output
	Input
	First Conclusion

