
System-Level Programming

1 Introduction

Peter Wägemann

Lehrstuhl für Informatik 4
Systemsoftware

Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

01
-E

in
fu

eh
ru

ng
_

en

http://sys.cs.fau.de/lehre/ss25

Introduction

Deepen knowledge of concepts and techniques
of computer science and software development

Starting point: Algorithms, Programming, and Data Representation
Main focus: System-Level Programming (SLP) in C

Development of software in C for a µController (µC)
and an operating-system platform (Linux)

SPiCboard learning development platform with an ATmega-µC
Practical experience in hardware and system-level software development

Understanding of language and hardware basics
for the development of system-level software

Being able to understand and assess the language C and
Dealing with concurrency and hardware orientation
Dealing with the abstractions of an operating system
(files, processes, . . .)

© klsw System-Level Programming (ST 25) 1 Introduction – Goals of the Lecture 1–1

01
-E

in
fu

eh
ru

ng
_

en

Motivation: Embedded Systems

Motivation: Embedded Systems

2 dl@cs.fau.de Aspect-Aware Operating System Development
2

Omnipresent: 98–99 percent of processors are being used in em-
bedded systems [3]

Cost-sensitive: 70–80 percent of all produced processors are
DSPs and µController, based on 8-bit architec-
ture or smaller [3, 4]

Relevant: 25 percent of job offers for EE engineers do con-
tain the terms embedded or automotive (http:
//stepstone.com)

© klsw System-Level Programming (ST 25) 1 Introduction – Why µController? 1–2

01
-E

in
fu

eh
ru

ng
_

en

http://stepstone.com
http://stepstone.com

Motivation: Embedded Systems

Motivation: Embedded Systems

2 dl@cs.fau.de Aspect-Aware Operating System Development
2

Omnipresent: 98–99 percent of processors are being used in em-
bedded systems [3]

Cost-sensitive: 70–80 percent of all produced processors are
DSPs and µController, based on 8-bit architec-
ture or smaller [3, 4]

Relevant: 25 percent of job offers for EE engineers do con-
tain the terms embedded or automotive (http:
//stepstone.com)

© klsw System-Level Programming (ST 25) 1 Introduction – Why µController? 1–2

01
-E

in
fu

eh
ru

ng
_

en

http://stepstone.com
http://stepstone.com

Motivation: Embedded Systems

Motivation: Embedded Systems

2 dl@cs.fau.de Aspect-Aware Operating System Development
2

Omnipresent: 98–99 percent of processors are being used in em-
bedded systems [3]

Cost-sensitive: 70–80 percent of all produced processors are
DSPs and µController, based on 8-bit architec-
ture or smaller [3, 4]

Relevant: 25 percent of job offers for EE engineers do con-
tain the terms embedded or automotive (http:
//stepstone.com)

© klsw System-Level Programming (ST 25) 1 Introduction – Why µController? 1–2

01
-E

in
fu

eh
ru

ng
_

en

http://stepstone.com
http://stepstone.com

Motivation: Embedded Systems

Motivation: Embedded Systems

2 dl@cs.fau.de Aspect-Aware Operating System Development
2

Omnipresent: 98–99 percent of processors are being used in em-
bedded systems [3]

Cost-sensitive: 70–80 percent of all produced processors are
DSPs and µController, based on 8-bit architec-
ture or smaller [3, 4]

Relevant: 25 percent of job offers for EE engineers do con-
tain the terms embedded or automotive (http:
//stepstone.com)

© klsw System-Level Programming (ST 25) 1 Introduction – Why µController? 1–2

01
-E

in
fu

eh
ru

ng
_

en

http://stepstone.com
http://stepstone.com

Motivation: Embedded Systems

Source: IC Insights 2014 McClean Report

© klsw System-Level Programming (ST 25) 1 Introduction – Why µController? 1–3

01
-E

in
fu

eh
ru

ng
_

en

Motivation: The ATmega-µC Family (8-bit)

Type Flash SRAM IO Timer 8/16 UART SPI ADC PWM EUR

ATTINY13 1 KiB 64 B 6 1/- - - 1*4 - 2,20

ATTINY2313 2 KiB 128 B 18 1/1 - 1 - - 2,99

ATMEGA48 4 KiB 512 B 23 2/1 1 1 8*10 6 2,40

ATMEGA16 16 KiB 1024 B 32 2/1 1 1 8*10 4 6,40

ATMEGA32 32 KiB 2048 B 32 2/1 1 1 8*10 4 5,40

ATMEGA64 64 KiB 4096 B 53 2/2 2 1 8*10 8 –

ATMEGA128 128 KiB 4096 B 53 2/2 2 1 8*10 8 19,80

ATMEGA256 256 KiB 8192 B 86 2/2 4 1 16*10 16 15,50

ATmega variants (selection) and market prices (Reichelt Elektronik, April 2023)

Becomes visible: resource scarcity
Flash (memory for program code and constant data) is scarce
RAM (memory for runtime variables) is extremely scarce
few bytes “wasted” ; significantly higher cost per piece

© klsw System-Level Programming (ST 25) 1 Introduction – Why µController? 1–4

01
-E

in
fu

eh
ru

ng
_

en

Motivation: The ATmega-µC Family (8-bit)

Type Flash SRAM IO Timer 8/16 UART SPI ADC PWM EUR

ATTINY13 1 KiB 64 B 6 1/- - - 1*4 - 2,20

ATTINY2313 2 KiB 128 B 18 1/1 - 1 - - 2,99

ATMEGA48 4 KiB 512 B 23 2/1 1 1 8*10 6 2,40

ATMEGA16 16 KiB 1024 B 32 2/1 1 1 8*10 4 6,40

ATMEGA32 32 KiB 2048 B 32 2/1 1 1 8*10 4 5,40

ATMEGA64 64 KiB 4096 B 53 2/2 2 1 8*10 8 –

ATMEGA128 128 KiB 4096 B 53 2/2 2 1 8*10 8 19,80

ATMEGA256 256 KiB 8192 B 86 2/2 4 1 16*10 16 15,50

ATmega variants (selection) and market prices (Reichelt Elektronik, April 2023)

Becomes visible: resource scarcity
Flash (memory for program code and constant data) is scarce
RAM (memory for runtime variables) is extremely scarce
few bytes “wasted” ; significantly higher cost per piece

© klsw System-Level Programming (ST 25) 1 Introduction – Why µController? 1–4

01
-E

in
fu

eh
ru

ng
_

en

Motivation: C as a Language

System-level software development mostly uses C.
Why C? (and not Python/Java/Scala/<favourite language>)

C stands for a multitude of important features

Runtime efficiency (CPU)
Translated C code runs on the processor directly
No checks for programming errors at runtime

Space efficiency (memory)
Code and data can be stored rather compact
No checks for data access at runtime

Directness (machine orientation)
C allows for direct access to memory and registers

Portability
There is a C compiler for every platform
C was “invented” (1973), to implement the OS
UNIX portable [1, 0]

; C is the lingua franca of system-level programming!

© klsw System-Level Programming (ST 25) 1 Introduction – Why C? 1–5

01
-E

in
fu

eh
ru

ng
_

en

Motivation: C as a Language

System-level software development mostly uses C.
Why C? (and not Python/Java/Scala/<favourite language>)

C stands for a multitude of important features
Runtime efficiency (CPU)

Translated C code runs on the processor directly
No checks for programming errors at runtime

Space efficiency (memory)
Code and data can be stored rather compact
No checks for data access at runtime

Directness (machine orientation)
C allows for direct access to memory and registers

Portability
There is a C compiler for every platform
C was “invented” (1973), to implement the OS
UNIX portable [1, 0]

; C is the lingua franca of system-level programming!

© klsw System-Level Programming (ST 25) 1 Introduction – Why C? 1–5

01
-E

in
fu

eh
ru

ng
_

en

Motivation: C as a Language

System-level software development mostly uses C.
Why C? (and not Python/Java/Scala/<favourite language>)

C stands for a multitude of important features
Runtime efficiency (CPU)

Translated C code runs on the processor directly
No checks for programming errors at runtime

Space efficiency (memory)
Code and data can be stored rather compact
No checks for data access at runtime

Directness (machine orientation)
C allows for direct access to memory and registers

Portability
There is a C compiler for every platform
C was “invented” (1973), to implement the OS
UNIX portable [1, 0]

; C is the lingua franca of system-level programming!

© klsw System-Level Programming (ST 25) 1 Introduction – Why C? 1–5

01
-E

in
fu

eh
ru

ng
_

en

Motivation: C as a Language

System-level software development mostly uses C.
Why C? (and not Python/Java/Scala/<favourite language>)

C stands for a multitude of important features
Runtime efficiency (CPU)

Translated C code runs on the processor directly
No checks for programming errors at runtime

Space efficiency (memory)
Code and data can be stored rather compact
No checks for data access at runtime

Directness (machine orientation)
C allows for direct access to memory and registers

Portability
There is a C compiler for every platform
C was “invented” (1973), to implement the OS
UNIX portable [1, 0]

; C is the lingua franca of system-level programming!

© klsw System-Level Programming (ST 25) 1 Introduction – Why C? 1–5

01
-E

in
fu

eh
ru

ng
_

en

Motivation: C as a Language

System-level software development mostly uses C.
Why C? (and not Python/Java/Scala/<favourite language>)

C stands for a multitude of important features
Runtime efficiency (CPU)

Translated C code runs on the processor directly
No checks for programming errors at runtime

Space efficiency (memory)
Code and data can be stored rather compact
No checks for data access at runtime

Directness (machine orientation)
C allows for direct access to memory and registers

Portability
There is a C compiler for every platform
C was “invented” (1973), to implement the OS
UNIX portable [1, 0]

; C is the lingua franca of system-level programming!

© klsw System-Level Programming (ST 25) 1 Introduction – Why C? 1–5

01
-E

in
fu

eh
ru

ng
_

en

Motivation: C as a Language

System-level software development mostly uses C.
Why C? (and not Python/Java/Scala/<favourite language>)

C stands for a multitude of important features
Runtime efficiency (CPU)

Translated C code runs on the processor directly
No checks for programming errors at runtime

Space efficiency (memory)
Code and data can be stored rather compact
No checks for data access at runtime

Directness (machine orientation)
C allows for direct access to memory and registers

Portability
There is a C compiler for every platform
C was “invented” (1973), to implement the OS
UNIX portable [1, 0]

; C is the lingua franca of system-level programming!

© klsw System-Level Programming (ST 25) 1 Introduction – Why C? 1–5

01
-E

in
fu

eh
ru

ng
_

en

Motivation: SLP – Syllabus and Concept

Teaching objective: system-level programming in C
This is a really broad field: hardware programming, operating systems,
middleware, data bases, distributed systems, compiler construction, . . .
Additionally, we have the goal of learning the language C itself

Approach
Concentration on two domains

µC programming
Software development for Linux system interface

Experience contrast µC environment ↔ operating system (OS)
Concepts and techniques taught and experienced with the help of
various examples
High relevance for the target audience (electrical & mechanical
engineering, ...)

© klsw System-Level Programming (ST 25) 1 Introduction – Why C? 1–6

01
-E

in
fu

eh
ru

ng
_

en

Motivation: SLP

At the end of the lecture, everyone should be able to assess,

what a µC can (not) do,

how labor-intensive & beneficial µC programming is,

what an OS does (not) provide,

how labor-intensive & beneficial it is to use a µC.

Everyone should be able to work with a computer scientist, if
necessary...

© klsw System-Level Programming (ST 25) 1 Introduction – Why C? 1–7

01
-E

in
fu

eh
ru

ng
_

en

Lecture Notes

This handout of the lecture notes will be provided online.
Chapters are available as individual files
The handout contains (some) additional information

However, the handout cannot be used as a substitute for
making your own notes!

© klsw System-Level Programming (ST 25) 1 Introduction – Literature 1–8

01
-E

in
fu

eh
ru

ng
_

en

Literature Recommendations

[2] standard book (more suitable as a reference):

Brian W. Kernighan und Dennis MacAlistair Ritchie.
The C Programming Language (2nd Edition). Engle-
wood Cliffs, NJ, USA: Prentice Hall PTR, 1988. ISBN:
978-8120305960

[0] open-access book (guide for audience with basic programming knowledge):

Brian “Beej Jorgensen” Hall. Beej’s Guide to C Pro-
gramming. 2025. URL: https://beej.us/guide/bgc/

[0] open-access book (covers modern C standards):

Jens Gustedt. Modern C. Manning, 2024. URL: https:
//inria.hal.science/hal-02383654

© klsw System-Level Programming (ST 25) 1 Introduction – Literature 1–9

01
-E

in
fu

eh
ru

ng
_

en

https://beej.us/guide/bgc/
https://inria.hal.science/hal-02383654
https://inria.hal.science/hal-02383654

References

[1] Brian W. Kernighan und Dennis MacAlistair Ritchie. The C Programming
Language. Englewood Cliffs, NJ, USA: Prentice Hall PTR, 1978.

[2] Brian W. Kernighan und Dennis MacAlistair Ritchie. The C Programming
Language (2nd Edition). Englewood Cliffs, NJ, USA: Prentice Hall PTR, 1988.
ISBN: 978-8120305960.

[3] David Tennenhouse. “Proactive Computing”. In: Communications of the ACM
(Mai 2000), S. 43–45.

[4] Jim Turley. “The Two Percent Solution”. In: embedded.com (Dez. 2002).
http://www.embedded.com/story/OEG20021217S0039, visited 2011-04-08.

© klsw System-Level Programming (ST 25) 1 Introduction – Literature 1–10

01
-E

in
fu

eh
ru

ng
_

en

http://www.embedded.com/story/OEG20021217S0039

	1 Introduction
	Goals of the Lecture
	Why µController?
	Why C?
	Literature

