06-Datentypen _en

O

System-Level Programming

6 Basic Data Types

Peter Wigemann

Lehrstuhl fiir Informatik 4
Systemsoftware

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU)

Summer Term 2025

http://sys.cs.fau.de/lehre/ss25

http://sys.cs.fau.de/lehre/ss25

06-Datentypen__en

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Introduction 6-1

What Exactly is a Data Type?

Data type = (<set of values>, <set of operations>)
s Literal value in the source code —
m Constant identifier for a value
m Variable identifier for a memory address,
where a value can be stored
= Function identifier for a sequence of instructions,

which will return a value
~ literals, constants, variables, functions all have a (data) type

The data type determines

m the representation of the value in memory
= the size which gets occupied by the variable in storage
= which operations are permitted

The data type gets determined

m explicitly, by declaration, type cast, or notation (literals)
= implicitly, by “omitting” (~ int bad style!)

06-Datentypen _en

O

Primitive Data Types in C

Integers/characters char, short, int, long, long long (C99)
m range of values: dependent on implementation [#Java]
still: char < short < int < long < long long

m both available in signed or unsigned version

Floating-point numbers float, double, long double

m range of values: dependent on implementation [#Java]
still: float < double < long double

= From C99 onwards, they are available as _Complex data types (for
complex numbers).

Empty data type void
= range of values:)

Boolean _Bool (C99)
m range of values: {0,1} (> actually only an integer type)
= conditional expressions (e.g., 1f(...)) are of type int! [#Java]

© klsw System-Level Programming (ST 25) 6 Basic Data Types — Introduction 6-2

06-Datentypen _en

Integer Types [~ Java]

B Integer type usage literal from
m char small integer or character "A’, 65, 0x41, 0101
m short [int] integer (int is optional) s.a.
m int integer of “natural size” s.a.
m long [int] big integer 65L, 0x41L, 0101L
m long long [int] really big integer 65LL, Ox41LL, 0101LL

B Type modifier get prefixed literal suffix
m signed type is signed (standard case) -
= unsigned type does not have a sign U
m const variable cannot be changed -

m Examples (definition of variables)
char a = 'A’; // char-variable, value 65 (ASCII: A)
const int b = Ox41; // int-constant, value 65 (Hex: 0x41)
long c = 0OL; // long-variable, value 0

unsigned long int d = 22UL; // unsigned-long-variable, value 22

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Integer Types: int and Co 6-3

Integer Types: Size and Range of Values

[# Java]

®m The internal representation (width in bits) is dependent on

implementation

Java
char 16
short 16
int 32
long 64
long long -

width of data types in bit

C Standard
>8

> 16

> 16

> 32

> 64

gccCiaz2
8

16

32

32

64

9gCClac4
8

16

32

64

64

gcCavr
8

16

16

32

64

B The range of values can be calculated from the width in bits
N +(2b/tsfl . 1)

= signed
m unsigned

06-Datentypen _en

7(2bitsfl

— +(2bits _

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Integer Types: int and Co 6—4

Integer Types: Size and Range of Values [#Java]

®m The internal representation (width in bits) is dependent on
implementation

width of data types in bit

Java C Standard gcciazo 9cCiaea 9CCaVR

char 16 >8 8 8 8

short 16 > 16 16 16 16

int 32 > 16 32 32 16

long 64 > 32 32 64 32

long long - > 64 64 64 64
B The range of values can be calculated from the width in bits

= signed —(2tT) (2P 1)
‘ = unsigned 0 — 4(2Pt 1)

The philosophy of C is obvious: Efficiency by machine orientation

06-Datentypen _en

Internal representation of integer types is defined by the hardware (width of
registers, bus, etc.). This yields code that is in general more efficient.

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Integer Types: int and Co 6—4

Integer Types: Machine Orientation —> Problem Orientation

® Problem: width (~ range of values) of C standard types is
dependent on implementation
— machine orientation

m Often needed: Integer types of specific size

— problem orientation
m represent range of values safely, but as memory efficient as possible

= dealing with registers of defined width n
= keeping code independent of compiler and hardware (~ portability)

06-Datentypen _en

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Integer Types: int and Co 6-5

06-Datentypen__en

Integer Types: Machine Orientation —> Problem Orientation

® Problem: width (~ range of values) of C standard types is
dependent on implementation
— machine orientation

m Often needed: Integer types of specific size

— problem orientation
m represent range of values safely, but as memory efficient as possible

= dealing with registers of defined width n
= keeping code independent of compiler and hardware (~ portability)

m Solution: module stdint.h
m defines alias types: intn_t and uintn_t for n € {8,16,32,64}
m gets provided by compiler developers

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Integer Types: int and Co 6-5

a
©
S

Integer Types: Machine Orientation —> Problem Orientation

Problem: width (~ range of values) of C standard types is
dependent on implementation
— machine orientation

Often needed: Integer types of specific size

— problem orientation
m represent range of values safely, but as memory efficient as possible

= dealing with registers of defined width n
= keeping code independent of compiler and hardware (~ portability)

Solution: module stdint.h
m defines alias types: intn_t and uintn_t for n € {8,16,32,64}
m gets provided by compiler developers

range of values for stdint.h-types

uint8_t 0 — 255 | int8_t —-128 — +127
uintl6_t 0 — 65535 | int16_t —-32768 — 432767
uint32_t 0 — 4204967295 | int32.t —2147483648 — 42147483647
uinté4_t 0 — >1.8x10" |int6dt <-9.2x10% — > 4+02x10'®

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Integer Types: int and Co 6-5

a
©
S

Integer Types: Machine Orientation —> Problem Orientation

Problem: width (~ range of values) of C standard types is
dependent on implementation
— machine orientation

Often needed: Integer types of specific size

— problem orientation
m represent range of values safely, but as memory efficient as possible

= dealing with registers of defined width n
= keeping code independent of compiler and hardware (~ portability)

Solution: module stdint.h How to define

= defines alias types: intn_t and uintn_t problem-specific

m gets provided by compiler developers types?

range of values for stdint.h-types

uint8_t 0 — 255 | int8_t —-128 — +127
uintl6_t 0 — 65535 | int16_t —-32768 — 432767
uint32_t 0 — 4294967295 | int32 t —2147483648 — +2147483647
uinté4_t 0 — >1.8x10" |int6dt <-9.2x10% — > 4+02x10'®

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Integer Types: int and Co 6-5

06-Datentypen _en

Type Aliases with typedef [# Java]

B With help of the keyword typedef, possibility to define a type alias:

typedef alias identifier;

m /dentifier is now an alternative name for a type expression
m [t can be used at any place a type expression is expected.

// stdint.h (avr-gcc) // stdint.h (x86-gcc, IA32)
typedef unsigned char uint8_t; typedef unsigned char uint8_t;
typedef unsigned int wuintl6_t; typedef unsigned short uintl6_t;
// main.c

#include <stdint.h>

uintl6_t counter = 0; // global 16-bit counter, range 0-65535

typedef uint8_t Register; // Registers on this machine are 8-bit

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Type Pseudonyms: typedef

6-6

Type Aliases with typedef (contine) [# Java]

m Type aliases enable easy problem-specific abstractions
m register is closer to the problem than uint8_t
~ later (e.g., with 16-bit-registers) modification possible
m uintl6_t is closer to the problem than unsigned char
m uintl6_t is safer than unsigned char

Definied bit widths are crucial for pC development!
m Major differences between platforms and compilers
~» compatibility problems
= To save memory, the smallest possible integer type should
always be used!

Rule: For system-level programming types
from stdint.h get used!

06-Datentypen _en

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Type Pseudonyms: typedef 67

Enumeration Types with enum

B With help of the keyword enum, an enumeration type is defined,
consisting of an explicit set of symbolic values:

enum identifierops { listofconstants } ;

m Example

o enum eLED {REDO, YELLOWO, GREEN®, BLUEO,
= definition: RED1, YELLOW1, GREEN1, BLUE1};

enum eLED myLed = YELLOWO; // enum necessary here!

® USage: o
sb_led_on(BLUE1);

06-Datentypen__en

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Enumeration Types: enum 6-8

Enumeration Types with enum

B With help of the keyword enum, an enumeration type is defined,
consisting of an explicit set of symbolic values:

enum identifierops { listofconstants } ;
m Example

enum eLED {REDO, YELLOW®, GREENG, BLUEO,

= definition: RED1, YELLOW1, GREEN1, BLUE1};

enum eLED myLed = YELLOWO; // enum necessary here!
m usage:
sb_led_on(BLUE1);

B Simplification with typedef

5 s definition: typedef enum eLED {REDO, YELLOWO, GREENO, BLUEO,

’ RED1, YELLOW1, GREEN1, BLUEl} LED;
a
8 = usage: LED myLed = YELLOWO; // LED --> enum eLED

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Enumeration Types: enum 6-8

06-Datentypen__en

enum — int [# Java]

B enum types are technically nothing else than integers (int)
= enum constants get enumerated, starting from 0

typedef enum { REDO, // value: 0
YELLOWO, // value: 1
GREENO, // value: 2
... } LED;

m possibility to explicitly assign values:
typedef enum { BUTTONO = 4, BUTTON1 = 8 } BUTTON;
m they can be used like ints (e. g., arithmetic operations)

sb_led_on(REDO® + 2); // -> LED GREENO is on

sb_led_on(1); // -> LED YELLOWO is on

for (int led = REDO; led <= BLUELl; led++)
sb_led_off(led); // turn off all LEDs

// Also possible...

sh_led_on(4711); // no compiler/runtime error!

B -~ There will be no type checks!

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Enumeration Types: enum 6-9

enum — int [# Java]

B enum types are technically nothing else than integers (int)
= enum constants get enumerated, starting from 0

typedef enum { REDO, // value: 0
YELLOWO, // value: 1
GREENO, // value: 2
... } LED;

m possibility to explicitly assign values:
typedef enum { BUTTONO = 4, BUTTON1 = 8 } BUTTON;

m they can be used like ints (e. g., arithmetic operations)
sb_led_on(REDO® + 2); // -> LED GREENO is on

sb_led_on(1); // -> LED YELLOWO is on

for (int led = REDO; led <= BLUELl; led++)
sb_led_off(led); // turn off all LEDs

// Also possible...

sh_led_on(4711); // no compiler/runtime error!

m -~ There will be no type checks! This conforms to
C philosophy!

2
@]
o
=]

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Enumeration Types: enum 6-9

06-Datentypen _en

Floating-Point (FP) Types [~ Java]

FP type usage literal form
m float single precision 100.0F, 1.0E2F
= double double precision 100.0, 1.0E2
m long double “extended precision” 100.0L 1.0E2L

Precision / range of values are implementation-dependent [#Java]

m still: float < double < long double

m long double and double are identical
on most platforms

“efficiency by machine
orientation”

O © Kisw ystem-Level Programming (ST 25) © Basic Data Types — Floating-Point Numbers: float and double
0

06-Datentypen _en

Floating-Point (FP) Types [~ Java]

FP type usage literal form
m float single precision 100.0F, 1.0E2F
= double double precision 100.0, 1.0E2
m long double “extended precision” 100.0L 1.0E2L

Precision / range of values are implementation-dependent [#Java]

m still: float < double < long double

m long double and double are identical
on most platforms

“efficiency by machine
orientation”

Floats + pC platform = $$%
m Often, pCs have no native hardware support for float arithmetic.
~ really expensive emulation in software (slow, much additional code)
m Memory demand of float- and double variables is really high
~> at least 32/64 bit (float/double)

Rule: When programming a puController, floating-point arithmetic
should be avoided!

O © Kisw ystem-Level Programming (ST 25) © Basic Data Types — Floating-Point Numbers: float and double
0

06-Datentypen__en

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Characters and Strings 6-11

Character — Integer [~ Java/Python]

In C, characters are integers —
m char is part of the integer types (usually 8 bit = 1 byte)
Representation takes place with ASCII code —

m 7-bit code — 128 standardized characters

(the remaining 128 characters can be interpreted differently)
m special literal form with single quote marks

'A’ — ASCII code of A
m non-printable characters with escape sequences

- tabulator "\t’
- line separator "\n’
- backslash "\’

character — integer ~» characters can be used in operations
char b = 'A" + 1; // b: 'B’

int lower(int ch) { // lower('X’): ’'x’
return ch + 0x20;

ASCII-Code Table (7 bit)

ASCIl — American Standard Code for Information Interchange

NUL SOH STX ETX EOT ENQ ACK BEL
00 o1 02 03 04 05 06 07
BS HT NL vT NP CR E ST
08 09 0A 0B ocC 0D OE OF
DLE DC1 DC2 DC3 DC4 NAK SYN ETB
10 11 12 13 14 15 16 17
CAN EM SUB ESC FS GS RS Us
18 19 1a 1B 1c 1D 1E 1F
sP T w # s % & 4
20 21 22 23 24 25 26 27
() * + ’ - - /
28 29 2A 2B 2c 2D 2E 2F
o 1 2 3 4 5 6 7
30 31 32 33 34 35 36 37
8 9 B H < = > ?
38 39 3A 3B 3C 3D 3E 3F
@ A B (<] D E F G
40 41 42 43 44 45 46 47
H I I K L M N
48 49 4A 4B 4c 4D 4B 4F
P Q R s T U v w
50 51 52 53 54 55 56 57
b3 Y Z L \ 1 ~ —
58 59 5A 5B 5C 5D 5E 5F
N a b c a e £ g
51 60 61 62 63 64 65 66 67
s h i 3 k 1 m n o
51 68 69 6A 6B 6C 6D 6E 6F
= P a r s t u v w
e 70 71 72 73 74 75 76 77
< x ¥ z { | ¥ ~ DEL
78 79 7A 7B 7C 7D 7E 7F

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Characters and Strings 6-12

Strings [# Java]

B In C, a string is an array of characters.

m representation: sequence of single characters, terminated by
(last character): NUL (ASCII value 0)
= memory demand: (length + 1) bytes

m Special literal form with double quotes:

047 terminating O byte

Hite H] H \ i

ryr

m Example (Linux)
#include <stdio.h>
char string[] = "Hello, World!\n";
int main(void) {

printf("%s", string);
return 0;

a
©
S

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Characters and Strings 6-13

a
©
S

Strings [# Java]

In C, a string is an array of characters.

m representation: sequence of single characters, terminated by
(last character): NUL (ASCII value 0)
= memory demand: (length + 1) bytes

Special literal form with double quotes:

047 terminating O byte

ryr

"Hit H] H \ i

Example (Linux)

#include <stdio.h>

char string[] = "Hello, World!\n"; Strings need relatively much memory
and “larger” output devices (e.g.,
int mai?gvoid) {t ing) LCD display).
printf("%s", string); - .
return 0; For pC programming they only

have a minor significance.

O © klsw System-Level Programming (ST 25) 6 Basic Data Types — Characters and Strings 6-13

06-Datentypen _en

Outlook: Complex Data Types

B From primitive data types, complex date types can be
created (recursively)

= Arrays — element sequence (same type) [~Java/Python]
int intArrayl[4]; // allocate array with 4 elements
intArray[0] = 0x4711; // set 1st element (index 0)

m Pointers — modifiable reference to a variable [#Java]
int a = 0x4711; // a: 0x4711
int *xb = &a; // b: -->a (memory location of a)
int c = *b; // pointer dereference (c: 0x4711)
*b = 23; // pointer dereference (a: 23)

m Structures < composition of elements of any type [#Java]
struct Point { int x; int y; };
struct Point p; // p is Point variable
p.x = 0x47; // set x-component
p.y = 0x11; // set y-component

®m \We have a closer look at this in later chapters.

O C) KIsw System-Level Programming (ST 25) © Basic Data Types — OUutlook: Fields and Pointers, Composite
ypes 6-14

	6 Basic Data Types
	Introduction
	Integer Types: int and Co
	Type Pseudonyms: typedef
	Enumeration Types: enum
	Floating-Point Numbers: float and double
	Characters and Strings
	Outlook: Fields and Pointers, Composite Types

