Betriebssystemtechnik

Adressräume: Trennung, Zugriff, Schutz

XIV. Nachlese

Wolfgang Schröder-Preikschat / Volkmar Sieh

26. Juli 2023

Gliederung

Rekapitulation Prozessadressräume

Perspektiven


Forschungsschwerpunkte und -projekte

Rechnerausstattung

Lehrstuhl Systemsoftware

Weiterqualifikation

Adressräume (von Programmen/Prozessen)

- tren nen: in eine räumliche Distanz voneinander bringen
 - klassisch, hardwarebasiert, durch MMU und Betriebssystem
 - unterstützt durch Dienstprogramme (utility program)
 - Kompilierer, Assemblierer, Binder, Lader
 - vertikal (vom Betriebssystem) und horizontal (Anwendungsprogramme)
- zu|grei|fen: nach etwas greifen und es festhalten bzw. an sich nehmen
 - Interprozesskommunikation (VSM) und Mitbenutzung (sharing)
 - Mitbenutzung durch Daten- (data) und Textverbund (code sharing)
 - kopieren beim Schreiben/Referenzieren (copy on write/reference)
- schüt zen: einer Sache Schutz gewähren, einen Schutz [ver]schaffen
 - Angriffssicherheit (security) und Betriebssicherheit (safety)
 - Immunität einerseits und Isolation andererseits
 - Eindrang bzw. Ausbruch von Prozessen verhindern
- \hookrightarrow ergänzend: softwarebasiert, durch typsichere Programmiersprachen

Gliederung

Rekapitulation

Prozessadressräume

Perspektiven

Forschungsschwerpunkte und -projekte Rechnerausstattung Lehrstuhl Systemsoftware Weiterqualifikation

Forschungsschwerpunkte am Lehrstuhl

- Komponierbarkeit und Konfigurierbarkeit
 - anwendungsorientierte (variantenreiche, typsichere) Systemsoftware
- Sparsamkeit
 - ressourcen-gewahrer Betrieb von Rechensystemen
- Zuverlässigkeit
 - Betriebsmittel schonende Fehler- und Einbruchstoleranz
- Rechtzeitigkeit
 - Migrationspfade zwischen zeit- und ereignisgesteuerten Echtzeitsystemen
- Spezialisierbarkeit
 - dedizierte Betriebssysteme: integriert, adaptiv, parallel
- Gleichzeitigkeit
 - Koordination der Kooperation und Konkurrenz zwischen Prozessen
- → Prozessadressräume sind mehr oder weniger querschneidend dazu

Laufzeitunterstützungssystem für invasives Rechnen

- *Octo* der Bezeichnung eines Wesens entnommen, das:
 - i hoch parallel in seinen Aktionen ist und ii sich sehr gut an seine Umgebung anpassen kann
- \hookrightarrow der Krake (Ordnung *Octopoda*)
 - kann kraft seiner (acht) Tentakel parallel agieren
 - vermag sich durch Farbänderung anzupassen und
 - verfügt über ein hoch entwickeltes Nevensystem
 - um sich auf dynamische Umgebungsbedingungen und -einflüsse einzustellen
- **POS** Abk. für (engl.) Parallel Operating System
 - ein Betriebssystem, das nicht bloß parallele Prozesse unterstützt
 - sondern dabei selbst inhärent parallel arbeitet
 - sowie sich einem wechselnden Anwendungsprofil entsprechend anpasst
 - Adressraumvirtualisierung und -devirtualisierung zur Laufzeit bei Bedarf
 - anwendungsorientierter virtuell gemeinsamer Speicher (VSM)
 - DFG: seit 06/2011, 3.5 WM (2.5 FAU, 1 KIT), 1 WHK, 3 SHK
 - https://sys.cs.fau.de/research/irtss

Nichtflüchtigkeit energiebewusster Betriebssysteme

Definition (NVM-pure Betriebssystem)

Ein Betriebssystem, das NVM nicht nur für die Maschinenprogramme verwaltet, sondern auch für eigene Zwecke nutzt: das selbst komplett im NVM liegt, darin abläuft sowie bis auf Register-/Zwischenspeicher nirgends flüchtigen Speicher benutzt.

- einen auf **Energieeffizienz** und **Rechenleistung** maximierten und **Latenzzeit** minimierten Betrieb eines Rechensystems erreichen
 - Verzicht auf viele, wenn nicht sogar sämtliche, für gewöhnlich sonst zu realisierende Persistenzmaßnahmen
 - Metadatenpersistenz eines Dateisystems (Superblock, in-core inode(7))
 - Zwischenspeicherung geschriebener Daten (delayed write, lazy write)
 - Datensynchronisation (sync(8), update(8))
 - flush-Dämon (bdflush(2)), ab Version 2.6 der pdflush-Faden
 - dadurch Hintergrundrauschen (background noise) im System verringern
- DFG: seit 08/2021, 2 WM (1 FAU, 1 RUB), 2 SHK
- 0
- https://sys.cs.fau.de/research/neon

Stromausfallbewusster virtueller persistenter Speicher

Definition (NVM-only Betriebssystem)

Ein *NVM-pure* Betriebssystem, das herkömmlichen DRAM-basierten Hauptspeicher nur noch benutzt, um die höheren Zugriffszeiten oder Latenzen zu kaschieren, die bei NVRAM noch vorhanden sind.

- das Betriebssystem macht den Maschinenprogrammen nichtflüchtigen Hauptspeicher funktional transparent zugänglich
 - Hochskalieren der Speicherkapazität auf NVRAM-Basis
 - Tolerierung unvollständiger, aber unterbrochener Schreiboperationen
 - Vorbeugung vollständiger, aber wiederholter Schreiboperationen
 - Gewähr eines Restenergiefensters zum Fixieren der Übergangszustände
- Symbiose von NVRAM und virtueller Speicher, Altsoftware den Weg ebenen für direkte Ausführung im nichtflüchtigen Hauptspeicher
- DFG: ab 09/2022, 2 WM (1 BTU, 1 FAU), 2 SHK
 - https://sys.cs.fau.de/research/pave

Resiliente eingebettete Kommunikationsknoten

- Ausfälle, Überlastung, Angriffe und das Unerwartete meistern
 - byteadressierbaren NVM als primären Hauptspeicher begreifen
 - dem Paradigma der transaktionalen Programmierung folgen
- Kommunikations- und Betriebssystem für mobile IoT-Gerätschaften
 - Sensoren und Aktuatoren
 - heterogene Speicherarchitekturen und Kommunikationsschnittellen
- Widerstandsfähigkeit gegenüber Betriebsstörungen
 - Mikrotransaktionen im Sinne nichtblockierender Synchronisation
 - durch Ausnahmen ausgelöste Fixpunkte des Übergangszustands
- Widerstandsfähigkeit gegenüber Funktionsstörungen
 - dynamisches Vorhersagen Kapazität des Kommunikationskanals
 - dynamisches Anpassen der Reparaturtechnik und des Ablaufplans
 - Schätzen des Informationalters und passenden Kommunikationstempos
- DFG: ab 09/2022, 2 WM (1 FAU, 1 UDS), 2 SHK
 - https://sys.cs.fau.de/research/respect

Gesamtsystemanalyse beschränkter Anwendungen

Beschränkung in zweierlei Hinsicht:

- funktional maßgeschneiderte echtzeitabhängige/-fähige Software
 - Anwendungsfall (use case)
- nichtfunktional Raum, Zeit, Energie
 - ungünstigster Fall (worst-case)
- Schwerpunkt sind energiebeschränkte Echtzeitsysteme
 - a priori Wissen zum möglichen/absehbaren Ablaufverhalten von Prozessen
 - WCRT worst-case response time
 - WCRE worst-case response energy consumption

Ungünstigste Reaktion (worst-case response)

Ressourcenverbrauchsbedarf vom Beginn einer Aufgabe bis zu ihrer Beendigung, einschließlich aller möglichen Störungen.

- vorauswissen, nichtfunktionales Verhalten automatisch zu beeinflussen
- dabei aber funktional äquivalente Systemdarstellungen beibehalten
- DFG: voraussichtlich Q3/2022, 1 WM, 1 SHK
 - https://sys.cs.fau.de/research/watwa

Migrationsbewusste mehrkernige Echtzeitexekutive

Migrationsentscheidungen anstatt auf globalen Lastparametern systematisch auf Basis von Hinweisen der unter (strikten) Echtzeitbedingungen ablaufenden Maschinenprogramme treffen.

- **Prozessmigration** in mehrkernigen Echtzeitsystemen
 - Hinweise zu zeitlichen und räumlichen Aspekten von Echtzeitprozessen
 - Markierung potentieller Migrationspunkte mehrfädiger Programme
 - → das zur Abwanderung bestimmte Prozessexemplar ist der Faden (*thread*)
- das Betriebssystem zu günstigen Entscheidungen befähigen
 - betreffs Vorhersagbarkeit und Leistungsfähigkeit des Gesamtsystems
 - angestrebte Verbesserung hinsichtlich **Antwortzeit** und **Planbarkeit**
- betrachtet werden Systeme von heterogener Speicherarchitektur
 - die durch Migration verursachten Verwaltungsgemeinkosten
 - die von Speicherort und Umfang der Migrationsdaten abhängen
- Eigenmittel: 2 WM (1 FAU, 1 TUDO), 2 SHK
 - https://sys.cs.fau.de/research/mare

Dynamische Betriebssystemspezialisierung

Große Systeme, einmal in Betrieb genommen, unterliegen in der Regel häufigen Änderungen — auch, um die Passgenauigkeit an sich ändernde Anwendungsanforderungen zu verbessern.

- gemeinhin werden **Allzwecksysteme** vorgefertigt und im Binärformat geliefert, ohne auf ein individuelles System zugeschnitten zu sein
 - eingeschränkte zielsystemspezifische Optimierungen zur Herstellungszeit
 - Erweiterungen der konkreten Befehlssatzebene bleiben unausgenutzt
 - \hookrightarrow Leistungspotential der gegebenen Hardware wird nicht ausgeschöpft
- weniger anspruchsvolle Anwendungen sollten nicht für verbrauchte Ressourcen durch nicht benötigte Funktionen zahlen müssen
 - ideale Betriebssysteme bieten genau das, was eine Anwendung benötigt
 - sie wachsen/schrumpfen mit den jeweiligen Anwendungsanforderungen
 - → bedarfssynchrone (just in time) Übersetzung des Betriebssystem(kern)s
- DFG, Projektkampagne: 2 WM (1 FAU, 1 RUB), 2 SHK
 - https://sys.cs.fau.de/research/doss

Systeme mehr-/vielkerniger Prozessoren

faui4*	clock	cores per domain		domain		#	
		physical	logical	NUMA	tile	"	
*8e	2.9 GHz	8	16	2	1	32	Xeon
*8f	2.9 GHZ	0	10		1	32	Aeon
*9big01	2.5 GHz	6	6	8	1	48	Opteron
*9big02	2.2 GHz	10	20	4	1	80	Xeon
*9big03	2.1 GHz	12	24	4	1	96	Xeon
*9big04	2 GHz ¹	64	128	2	1	256	Ерус
*9big05	2.5 GHz	16	128	2	4	1024	ThunderX2
*9phi01	1.2 GHz	6	12	2	1	24	Xeon
	1.1 GHz	57	228	2	1	456	Xeon Phi
*scc	1.5 GHz	4	8	1	1	8	Xeon
	800 MHz	2	_	_	24	48	Pentium
fastbox	3.5 GHz	4	8	1	1	8	Xeon TSX
InvasIC	50 MHz	5	5	16		80	LEON/SPARC
							= '

¹mit boost 3.35 GHz

Bachelor-, Master- oder Doktorarbeit

Literaturverzeichnis I

- [1] SCHRÖDER-PREIKSCHAT, W.; KLEINÖDER, J.: Systemprogrammierung. http://www4.informatik.uni-erlangen.de/Lehre/WS08/V_SP, 2008 ff.
- [2] SIEH, V.: Betriebssysteme. http://www4.cs.fau.de/Lehre/WS17/V_BS, 2017 ff.

