Übungen zu Systemnahe Programmierung in C (SPiC) – Sommersemester 2022

Übung 6

Tim Rheinfels Phillip Raffeck Maximilian Ott

Lehrstuhl für Informatik 4 Friedrich-Alexander-Universität Erlangen-Nürnberg

Vorstellung Aufgabe 3

AVR Timer

Timer: Motivation

- Häufige Aufgaben in der Mikrocontrollerprogrammierung:
 - Regelmäßige Aktualisierung der Ausgabe (z.B. Bildwiederholrate)
 - Regelmäßiges Auslesen eines Wertes (z.B. serielle Konsole)
 - Pulseweitenmodulation (PWM)
 - Passives Warten
 - ..
- ⇒ Timer helfen bei der Umsetzung

Timer: Funktionsweise

- Ein Timer modifiziert pro Timertakt seinen Zähler
 - Inkrement (default)
 - Dekrement
- Bei vorher konfigurierten Ereignissen wird ein Interrupt ausgelöst
 - Zähler erreicht einen bestimmten Wert
 - Zähler läuft über
 - (externes Ereignis tritt auf)
- Der ATmega328PB bietet 5 verschiedene Timer:
 - TIMER{0,2}:8-bit Zähler
 - TIMER{1,3,4}: 16-bit Zähler
- ⇒ Für die Übungsaufgaben: TIMER0
- ⇒ In der libspicboard: TIMER{1,2,4}

Timer: Konfiguration (Timertakt)

■ Wie schnell läuft der Timer:

- TCCR0B: TC0 Control Register B
- CSxx: Clock Select Bits
- Prescaler: Anzahl der CPU-Takte bis Zähler inkrementiert wird
- Was passiert, wenn die CPU in den Schlafmodus geht?

CS02	CS01	CS00	Beschreibung	
0	0	0	Timer aus	
0	О	1	prescaler 1	
0	1	0	prescaler 8	
0	1	1	prescaler 64	
1	О	0	prescaler 256	
1	0	1	prescaler 1024	
1	1	0	Ext. Takt (fallende Flanke)	
1	1	1	Ext. Takt (steigende Flanke)	

Timer: Konfiguration (Timertakt)

CS02	CS01	CS00	Beschreibung	
0	0	0	Timer aus	
0	0	1	prescaler 1	
0	1	0	prescaler 8	
0	1	1	prescaler 64	
1	0	0	prescaler 256	
1	О	1	prescaler 1024	
1	1	0	Ext. Takt (fallende Flanke)	
1	1	1	Ext. Takt (steigende Flanke)	

Timer: Konfiguration (Auslöseevent)

Wann löst der Timer einen Interrupt aus:

- Overflow: Wenn der Zähler überläuft
- Match: Wenn der Zähler einen bestimmten Wert erreicht
 - ⇒ Register OCR0A (TIMERO Output Compare Register A)
 - ⇒ Register OCR0B (TIMER0 Output Compare Register B)
- Interrupts einzeln demaskierbar
- TIMSK0: TIMER0 Interrupt Mask Register

Bit	ISR	Beschreibung
TOIE0	TIMER0_OVF_vect	TIMER0 Overflow (Interrupt Enable)
OCIE0A	TIMER0_COMPA_vect	TIMER0 Output Compare A ()
OCIE0B	TIMER0_COMPB_vect	TIMER0 Output Compare B ()

Timer: Konfiguration (Auslöseevent)

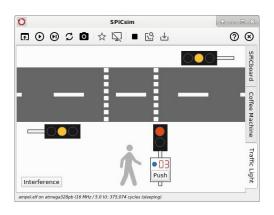
Wann löst der Timer einen Interrupt aus:

- Overflow: Wenn der Zähler überläuft
- Match: Wenn der Zähler einen bestimmten Wert erreicht
 - ⇒ Register OCR0A (TIMERO Output Compare Register A)
 - ⇒ Register OCR0B (TIMER0 Output Compare Register B)
- Interrupts einzeln demaskierbar
- TIMSK0: TIMER0 Interrupt Mask Register

Bit	ISR	Beschreibung
TOIE0	TIMER0_OVF_vect	TIMER0 Overflow (Interrupt Enable)
OCIE0A	TIMER0_COMPA_vect	TIMER0 Output Compare A ()
OCIE0B	TIMER0_COMPB_vect	TIMER0 Output Compare B ()

Bit	ISR	Beschreibung
TOIE0	TIMER0_OVF_vect	TIMER0 Overflow (Interrupt Enable)
OCIE0A	TIMER0_COMPA_vect	TIMER0 Output Compare A ()
OCIE0B	TIMER0_COMPB_vect	TIMERO Output Compare B ()

Timer: Beispiel

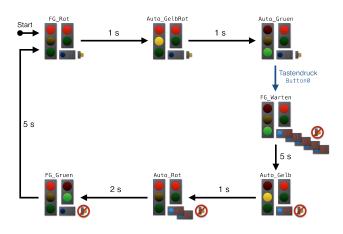

■ Zur Erinnerung: $prescaler \in \{1, 8, 64, 256, 1024\}$

■ Beispiel:

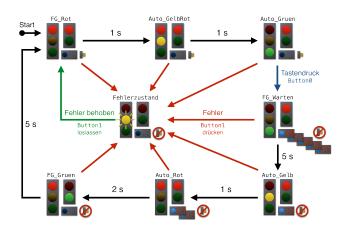
- 8-bit Timer mit Überlaufinterrupt
- CPU Frequenz: 16 MHz (ATmega328PB)
- Ziel: Mit Periode 1 s zählen
- ⇒ Welcher prescaler ist am ressourcenschonendsten?
- ⇒ Wie viele Überlaufinterrupts bis 1 s vergangen ist?
- ⇒ Welcher Fehler entsteht?

Aufgabe: Ampel

■ Implementierung einer (Fußgänger-)Ampel mit Wartezeitanzeige



- Zustände mit bestimmten Eigenschaften; definierter Initialzustand
- **Zustandswechsel** in Abhängigkeit von definierten Bedingungen


Ampel als Zustandsautomat

Ampel als Zustandsautomat

Festlegen von Zuständen: enum-Typen

- Festlegung durch Zahlen ist fehleranfällig
 - Schwer zu merken
 - Wertebereich nur bedingt einschränkbar
- Besser enum:

```
01 enum state { STATE_RED, STATE_YELLOW, STATE_GREEN };
02
03 enum state my_state = STATE_RED;
```

Mit typedef noch lesbarer:

```
typedef enum { STATE_RED, STATE_YELLOW, STATE_GREEN } state;

state my_state = STATE_RED;
```

Zustandsabfragen: switch-case-Anweisung


```
switch ( my state ) {
   case STATE RED:
03
     break;
04
   case STATE_YELLOW:
06
07
     break;
   case STATE GREEN:
08
09
     break:
10
   default:
     // maybe invalid state
12
13
14
```

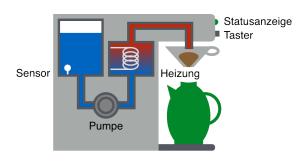
- Vermeidung von if-else-Kaskaden
- switch-Ausdruck muss eine Zahl sein (besser ein enum-Typ)
- break-Anweisung nicht vergessen!
- Ideal für Abarbeitung von Systemen mit versch. Zuständen ⇒ Implementierung von Zustandsautomaten

Zustandsübergänge

- Alle Transitionen werden durch Interrupts ausgelöst
 - BUTTON0 und BUTTON1 für Interrupts konfigurieren
 - ⇒ Welche Flanke soll Interrupts auslösen?
 - TIMER0 konfigurieren (Einheit: 1 Sekunde)
- Keine Verwendung des Timer Moduls der libspicboard für die Abgabe
 - \Rightarrow Zum debuggen aber u.U. praktisch

Hinweise

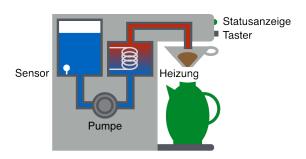
Hinweise


- Ablauf (exakt) nach Aufgabenbeschreibung (Referenzimplementierung verfügbar)
- Tastendrücke und Alarme als Ereignisse
- Passiv Warten auf die jeweiligen Interrupts
- Deaktivieren des Tasters durch Ignorieren des entsprechenden Interrupts
 - (Änderung der Interrupt-Konfiguration ist nicht notwendig)
- Abbildung auf Zustandsautomaten sinnvoll
- Verwendung von volatile begründen

Hands-on: Kaffeemaschine

Screencast: https://www.video.uni-erlangen.de/clip/id/17647

Hands-on: Kaffeemaschine (1)



■ Lernziele:

- Zustandsautomaten
- Timer bzw. Alarm
- Interrupts & Schlafenlegen

Hands-on: Kaffeemaschine (1)

Beschaltung:

- Pumpe & Heizung: Port D, Pin 5 (active-low)
- Taster: INTO an Port D, Pin 2 (active-low)
- Sensor: INT1 an Port D, Pin 3 (Wasser: high; kein Wasser: low)
- Statusanzeige:

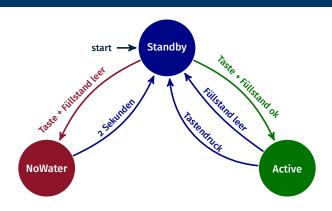
BLUE0: STANDBYGREEN0: ACTIVERED0: NO_WATER

Hands-on: Kaffeemaschine (2)

STANDBY

- Kaffeemaschine ist aus
- Pumpe und Heizung sind aus
- Benutzer kann Kaffeezubereitung durch Tastendruck starten
- Anfangszustand

ACTIVE


- Kaffeemaschine ist an
- Pumpe und Heizung sind an
- Wassertank ist nicht leer
- Benutzer kann Kaffeezubereitung durch Tastendruck beenden

NO_WATER

- Kaffeemaschine zeigt an, dass sie nicht genügend Wasser hat
- Pumpe und Heizung sind aus
- Zeitdauer: 2 Sekunden

Hands-on: Kaffeemaschine (2)

■ Hinweise:

- Tastendruck & Füllstandsänderung durch Interrupts
- Statusanzeige: void setLEDState(state_t state)
- Wartephasen ggf. über Singleshot-Alarm realisieren
- In Wartephasen Mikrocontroller in den Energiesparmodus

Hands-on: Kaffeemaschine (3)

DDRx hier konfiguriert man Pin i von Port x als Ein- oder Ausgang

- Bit i = 1 → Pin i als Ausgang verwenden
- Bit i = 0 → Pin i als Eingang verwenden

PORTx Auswirkung abhängig von DDRx:

- ist Pin i als Ausgang konfiguriert, so steuert Bit i im PORTx Register ob am Pin i ein high- ode r ein low-Pegel erzeugt werden soll
 - Bit i = 1 → high-Pegel an Pin i
 - Bit i = 0 → low-Pegel an Pini
- ist Pin i als Eingang konfiguriert, so kann man einen internen pull-up-Widerstand aktivieren
 - Bit i = 1 → pull-up-Widerstand an Pin i (Pegel wird auf high gezogen)
 - Bit i = 0 → Pin i als tri-state konfiguriert

PINx Bit i gibt aktuellen Wert des Pin i von Port x an (nur lesbar)

Hands-on: Kaffeemaschine (4)

- Interrupt Sense Control (ISC) Bits befinden sich beim ATmega328PB im External Interrupt Control Register A (EICRA)
- Position der ISC-Bits im Register durch Makros definiert

Interrupt o		Interrupt bei	Interrupt 1	
ISC01	ISC00	interrupt bei	ISC11	ISC10
0	0	low Pegel	0	0
0	1	beliebiger Flanke	0	1
1	0	fallender Flanke	1	0
1	1	steigender Flanke	1	1

- ATmega328PB: External Interrupt Mask Register (EIMSK)
- Die Bitpositionen in diesem Register sind durch Makros INTn definiert